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Recap: Fisher’s LDA Classifier

Let D = {(xV,y)}N N training samples
Inputs x € R™, binary valued labels y € {0, 1}

. . . —1
* Given Fisher’s solution: Sy;; SBWrpA = AWLDA

* Decision rule based on Fisher’s LDA projection:

y=1
wliox
LDA < Y
y=20
Hyperplane
* Can decide y threshold using ROC curves in n-dims.
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Recap: Data Representation vs Classification

° Data Representation: Project data |, . N
to lower dimensional space that o] ¢ e NS '
most accurately represents the s - T
original data, e.g., PCA projects in = '+ i of T
directions of maximum variance sl s RS

204

* Data Classification: Project data to
a low dimensional space that
preserves structure useful for
classification, e.g., Fisher’s LDA

15 A
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0
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Kevin Murphy, “Probabilistic Machine Learning: An Introduction”, 2022
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Probabilistic Machine Learning

* Classification in a functional input-output way:
y = f(x;0)

* Cannot perfectly predict input-output mappings, there 1s always uncertainty
< Epistemic/Model: From limited knowledge of f, e.g., not enough data
< Aleatoric/Data: From intrinsic randomness in the data, e.g., noisy input source

* Must capture uncertainty in the classification; think conditional probability:

p(L=y|x,0) = f,(x;0)

Now f,, (x; @) returns the probability of class label y from all labels L
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Statistical Approach

* Statistical methods in machine learning assume that whatever process
“generating” our data is governed by rules of probability

Let D = {X(l), . ,X(N)} be our dataset of N random vector samples x(*) € R”

* Also assume samples are independent & identically distributed (iid):
Product of marginals

p(D) = pxy,..xn (X, x ) = o (x D) - (xY))
Joint likelihood of entire dataset = py (X(l)) e (X(N))

Identical RV

* Under this probabilistic framework, how can we make classification
decisions using (posterior) probability p(L = y | x)?
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Example: Image Classification of Dogs & Cats

* Goal: Decide whether an unseen image 1s either a cat or dog

* In decision-theoretic terminology:

< Our hypotheses are our labels L, where L = 1 for cat and L = 2 for dog
< QOur decisions D in this setting also correspond to our labels L
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Class Conditional Probabilities

° Probabilities p(x | L = j) of observations X whose distribution depends on a
particular hypothesis or label j, also denoted as p(x | [;)

® This distribution 1s known as the class-conditional likelihood

* E.g. x 1s a random vector of variables, like color features, tail-to-body ratio...

A
(‘ p(x|lh)

Look at one >
scalar variable A

SR U AN
>
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Decide O

T Likelihoo

d

* Need a decision rule for whether x;,4+ 1s from the cat or dog class

p(z|l;)

A

1 1 )

Ltest Ltest

* Deciding labels that assign higher likelihood p(x | [;)
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Maximum Likelithood (ML) Classification

* For two classes and x € R" , the decision
rule D (x) could be a ratio of likelihoods:

D(x) =2 p(z ;) 4
p(x ! 12) > | ]
p(x|li) < p=1,
D(x)=1 2
[ -
* For C > 2, choose maximum likelihood: ! D=2
Decision 5 D(x) = argmax p(x|[;)

Rule je{1,...,C}

[ g

’ : Ltest T T
* Or what if one class if very rare? E.g., ©s test  <“test

only a few 1mages of dogs

Summer 2022 BAYESIAN DECISION THEORY




Class Priors

* If we had an equal number of cat and dog images, we would think the next
new 1mage encountered 1s equally likely to be a cat or dog

* Class Prior: Assumed a priori probability p(L = j) of a data point
belonging to a particular class j

* E.g., our dataset reflects prior knowledge of how likely we are to see cat/dog

- d g d 4

p(li) = 0.7 p(l2) = 0.3 Zp(lj) =1
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Decide Off Prior Knowledge

* Assume incorrect classifications of cats/dogs have the same cost or effect

* If the only information we could use 1s based on our prior probabilities, then
in this uninformed state we could use the following decision rule:

Decide cat (1) if p(1;) > p(l,); else dog (2)

* Probably not a good 1dea as we would repeatedly make the same decision
even though both types of images might appear in unseen data

* Better to make use of the information/evidence we have available
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Decide Oft Prior AND Likelihood

p(z|l;)
A

How do we decide
a class now?

Ltest

* Given these prior probabilities AND likelthood, would decide cat (1)
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Bayes’ Theorem

* Interested in the joint probability:
p(x,1;) = p(x|l;)p(l;) = p(l; [ x)p(x)

* Bayes’ Theorem lets us relate these conditional distributions:

1) — PN G)p()
p(lj[x) = o
p(X) +——1____ Normalization
Constant
* In plain English:
, likelihood x prior
posterior =

evidence
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Posterior Probability

A
p(z|l2)
p(x 1)

. likelihood
:
: T

A :
|
I

p(x | 11)p(ly) ! p(x|l2)p(l2) likelihood X prior
I
/:/\-—) T Decision
A :¢ Boundary
| p(lilz) ' plla|z)

! likelihood X prior
| t 3 —
;/f POSLEHOT evidence

B > T
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Bayes’ Decision Theory — Min. Probability of Error Rule

* Goal: Minimize misclassification rate or probability of error

p(l1|x) if decide [

* For C = 2 Pr(error) =
orC =4 ( ) {p(lz | x) if decide [4

* So decide cat (1) if p(l; | x) > p(l, | X); else dog, i.e., Pr(error) = .11{1%112}]3(@- | x)
Jel,

p(x|l)p(lh) - p(x|l2)p(l2)

PR P ) St

p(x|l1)p(l1) > p(x|l2)p(l2)
Opt ma) Boes (assfar = \p(xh) - p(l2)

* Equivalently, decide 1 if:

p(x|l2) = p(l1)
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Bayes’ Decision Theory — Max. a Posterior1 (MAP)

“Optimal” but assumes relevant probability terms, e.g., p(x | [;) are known

N

Rarely know true
p(x|h) _ plle) probabilities; fit models
p(X | lg) p(ll) instead by estimating 0

* Special Cases:

/

« If x uninformative about labels, p(x | [;) = p(x | [,) then decide on priors
< If X uniformly distributed, i.e., p(l;) = p(l,) then decide on likelihoods

* Decision Rule equivalence to maximum a posteriori, so for € > 2 classes:

D(x) = argmax p(l; |x)|= argmax p(x|{;)p(l;)
jE{l,...,C} jG{l,-..,C}
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Empirical Risk Minimization (ERM) — Motivation

* Generalize:
<+ Allow actions D that are not just deciding classes/labels L, e.g., “rejection”

< Introduce a loss/cost function more general than the probability of error, e.g.,
cases where classification errors are not all equal

* Examples:
< Must be certain that patient is sick before reporting diagnosis
< Treatment plans have side-effects and trade-off costs depending on the patient
< Reporting a fire is vital and so false alarms are acceptable (less risky)
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Empirical Risk Minimization (ERM) — Terminology

* Notation:
» LetL = {1, ..., C} be the finite set of labels (“states of nature”)
«+ LetD = {1, ..., A} be the finite set of possible actions/decisions

% Then A is the loss matrix such that 4;; 1s the loss/cost associated with deciding
action i when the true label is j
o

) AxC
N= L *>‘|Ej—— Eﬂi
| _

J
* Introduce notion of risk as expected loss/cost for a decision rule D (x):

Ex|R| = /OQ R(D(x) |x)px (x)dx

— o0
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Empirical Risk Minimization (ERM) — Formulation

Ex(f] = | " R(D() | x)px (x)dx

— 0

° Conditional risk of taking an action/decision D(x) = i for a given X:

. R( )=1|x) = Aiip(L
Ollq Z " R,/La

* Empirical Risk Minimization: min R(D(x) = 7|x)

* ERM Decision Rule: D(x) = argmin R(D(x) = i | x)

1
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Two Category Classification — Setting

* Two categories [; and two decisions d; for ¢, 5 € {1,2}

R(di |x) = Aip(li | x) 4+ A2p(l2 | x)
R(d2 | x) = Xa1p(li | x) 4 A22p(l2 | x)
° Per ERM, decide D = 1if R(d; | x) < R(d, | x) and vice versa

* Conditional risk for each decision:

The ERM decision rule in this case is thus:

D(x) =2
>
A11p(ly | x) + Ar2p(l2 [ x) < Ao1p(l1 | x) + Az2p(l2 | x)
D(x)=1
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Two Category Classification — Intuition

D(x) =2
Aip(l | x) + Aap(la | x) z Ao1p(l1 | x) + Aaap(la | x)
D(x)=1
® Rearrange: D(x) =2
(A12 — A22)p(l2 | x) z (A21 — A11)p(l1 [x)

D(x

~—
|
p—t

* The loss incurred for error is usually > than the loss of being correct,
meaning /’{12 — /’{22 > (0 and /’{21 — /’{11 > ()

* Decisions determined by the posterior probabilities scaled by loss differences
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Two Category Classification — Likelithood Ratio Test

D(x) =2
(A2 — A22)p(l2 | x) z (A21 — A11)p(l1 | x)
D(x)=1
* Replace posteriors by the priors and conditional densities (Bayes):
D(x) =2
>

(A2 — Aa22)p(x| l2)p(l2) (A21 — A1)p(x | l1)p(lh)

D(x)=1

D(x)
>
<

D(x)

* Assuming 11, — A5, > 0 we can write: (A21 — A11) p(lh)

(>\12 — )\22) p(ZQ)

p(x|l2)

Likelihood Ratio Test: Decide 1 or 2 based on — p(x | ll)
a threshold independent of observations X

2
1
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Z.ero-One Loss

* Classification problems usually view actions as decisions about labels

* For true label L = j, the decision D = i 1s correct if i = j and wrong if i # j

* Naturally wish to avoid errors so aim to minimize the probability of error

N Erer

* Loss function 1s hence zero-one or symmetric loss, where no loss is fafe
assigned to a correct decision, and unit loss to any error (equally costly):

0 ifi—
As Kronecker 1 - 6..J SAij = { He=J j,ie{l,...,C}

delta expression
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Minimum-Error-Rate Classification

* Risk 1s equivocally average error rate: Conditional probability
that d; is correct

R(d; | x) = Z)\wpl ) (zjx)—1p‘(zix) |
N\

Sums all j entries P (Qr‘ror)
except i (zeroed)

* Thus to minimize risk is to minimize probability of error

® Which 1s identical to maximizing posterior: ERM = MAP

Decision Rule | D(x) = argmin 1 — p(l; | x) = argmax p(l; | x)
for 0-1 loss ic{l,...,A} ic{l,...,A}
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Coding Break
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Concluding Remarks

* Looked at Bayesian Decision Theory and how to apply Bayes Theorem to
obtain an optimal classifier

* Established decision rules based on ML, MAP, and ERM
* Code:

https://github.com/mazrk7/EECE5644 IntroMLPR LectureCode/blob/main/no
tebooks/erm decision theory/erm gmm.ipynb

https://github.com/mazrk7/EECE5644 IntroMLPR LectureCode/blob/main/no
tebooks/erm _decision theory/erm decision boundaries.ipynb

* Naive Bayes to follow!
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