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Tentative Course Outline (Wks. 1-2)

Likelihood (ML), Max a Posteriori

: Additional
Assignments .
Reading
Course Overview Chpt—1
Machine Learning Basies Optional Homework 0 Murphv 2012
released on Canvas on :
F ou.n.datlons. L}Heahér}gebiaa, | 07/08 but please do NOT StantordL/ARes oW
Prebability, Numerical Optimization | 07/06-12 submit on Canvas StanfordProb-Review
(Gradient Descent), Regression Chpt. 8 Murphy 2022
Quick Python Tutorial 07/12 N/A
Linear Classifier Design, Linear
Discriminant Analysis and Principal | 07/13-14 | Homework 1 released on Clll\l/)[:ls 9h'2 ;%;g 2
Component Analysis (PCA) Canvas on 07/15 PRy
Bayesian Decision Theory: e Uik Chpt. 2
Empirical Risk Min, Max 07/14-15 Duda & Hart 2001

Deniz Erdogmus Notes
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Probability Recap

* Independent implies zero covariance and uncorrelated:

X ULY = Cov[X,Y]=0<«= Corr|X,Y]| =0
® Uncorrelated does NOT imply independent

Corr[X,Y] =0 =5 pxy(X,Y) =px(X)py (Y)

* Unless multivariate Gaussian:

1 1 1
Px,,.. X, (X) = (QW)%|E’%6XP(— §(X—M)TE (X—M))
_E[Xl]- i V&I’[Xl] s COV[Xl,Xn]-
p=1 | == 5 g .
E[X,] Cov| X, Xq] - Var[X,,] |
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Numerical Optimization

Inputs x

™ p(y | x;
\g-» (‘ g% yiJ‘E(X

Prediction g

Model > Cat
Labels y T N
Cat | Dog (‘ ? | (8 ) \f/
s*

l S

Find parameter values 8 € © that minimize a loss/cost /objective function £(80)
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Optimization Problem

Parameters: Unknown variables of a Continuous Optimization:
model/function © C R"™ for n variables

\ T

Find parameter values 8 € © that minimize a loss function £: 0 — R :

RS n£
. 96@
min L(8)= max-L(B) /

Objective/Loss Function:

Optimize: Find set of parameters that
Quantitative measure of performance,
minimize/maximize objective
e.g., error, profit, time etc.
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Local vs Global Optimization

| (65
* Optimal solutions may not exist or may Minimum
not be unique does not ex1st/
(
* Even if they exist, global optima 6* are
difficult to recognize and locate (6 L —vo
. A
* Local optima assumed acceptable, Strict local maxima
especially 1in non-linear cases N
: % Strict
* Local solutions may be strictly lower or V% local min.
equally (flat) to nearby competitors , [latlocal
/B minima >
Strict g
global min.
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Constrained vs Unconstrained Optimization

* Unconstrained: No constraints on £, can choose any parameter value 6 € ©

* Constrained: Exist a set of constraints on allowable parameters
< Partition into inequality and equality constraints:

mein L(O) st. ¢(0)=0,1€€&

61(9) > 0,1l

< Feasible set is the subset C C © that satisfies these constraints

<+ Constrained optimization formulation: * € arg min £(0)
0cC

min (6; —2)? + (0, — 1)? st. 62 —0, <0 6+ 6,
91,02 ((8)=1|_,' .

<« Example:

Ww\___/ -g _e
s L(®) 01+ 602 <2 T
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What Makes a LLocal Minimum?

Two properties need to be satisfied to fulfil a local minimum:

1. g(0*) =0, i.e. 8" is a stationary point

2. H(0*) > 0 i.e. H is a positive semi-definite matrix

Measures /

- 0L A
50
curvature %
2
g(0) =VLEO) = | .
L
L 56, -
A
Positive
W
Minimum
>
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H(0) = V?L(0) =

Maximum

Negative
Curvature

>
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OK... But HOW do we Optimize £(60)?

Follow the slope
Gradient Descent

Summer 2022 OPTIMIZATION & GD




Gradient Descent — Intuition

* Choose an initial value ()
° At each iteration, choose a new 81 to decrease £(0)

* Repeat until stationary point (minimum) where g(0) = 0

L(Hli 62) ’
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Gradient Descent — Algorithm

1. Initialize 00

2. Repeat until convergence:
Move in direction of

Voctorized o+l — g(t) _ OzV[,(H(t)) negative gradient
cctorize hence name descent
/ k/

A
(t+1) _ p(t) _ oL
0; =0;" —agy
forj=1,...,n L(6) Step Size/Learning Rate:

} a <= A small value that controls how
far we move along gradient

0* g(t;rl)g(t) >
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Gradient Descent — Derivative Direction

1. Initialize 00

2. Repeat until convergence:

6!+ = 9 _ avL(0W)

@ 1s on the left of minimum 6 1is on the right of minimum
Gradient is negative so Gradient is positive so update
update rule will increase 6 rule will decrease 6

\ As we approach 6*

: slope gets smaller and
9' x > thus steps are smaller
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Gradient Descent — Choosing Step Size

1. Initialize 00

2. Repeat until convergence:

6!+ = 9 _ avL(0W)

a too large then we can
overshoot minimum, fail to
converge or even diverge

A A
L(6) L(6)

a too small then gradient
descent can be slow

0" 0"
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Gradient Descent — Convergence

1. Initialize 00

2. Repeat until convergence: When? g(8) =0

o+l — g(t) _ aV[,(H(t)) Convex functions
“bowl” shaped

* Strictly convex functions have one global mmimum

A

Convex Function: no line
segment joining two points
along the function lie below

the graph at any point
>

6, 20 -20 9,
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Gradient Descent — Convergence Issues

* Most functions more complex than convex
and can cause convergence 1ssues:

< Stop at a local minimum

< Plateau points bring descent to a slow halt

R I S IS SN

Cost
A

B0

Try multiple random starting locations 6(%

Plateau

B S W

Global >0

minimum

Local minimum
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Example: Least Squares Regression — Sample Predictions

Let D = {(xV,y)}N N training samples
Inputs or features x € X = R™ and real-valued responses y € R
Regression coefficients or weights w € R™ and a bias term wg € R

Model predictions/hypotheses: A
R - ~ Forone
§=f(x;0)=wo+ ) wjw;=0"%

j=1 =
Y

where 0 = [wg, w] € R""! x =[1,x] € R**!

X
Not actually __—7 :

n-dimensional
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Example: Least Squares Regression — Dataset Predictions

Let D = {(xV,y)}N N training samples
Inputs or features x € X = R™ and real-valued responses y € R
Regression coefficients or weights w € R™ and a bias term wg € R

For full dataset with N training examples: A
Design y = X6 For N
Matrix \ — samples

Y

where X € RVxX(+D) ¢ ¢ RN
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Example: Least Squares Regression — Loss Function

Let D = {(xV,y)}N N training samples

Inputs or features x € A = R"™ and real-valued responses y € R
Regression coefficients or weights w € R™ and a bias term wg € R

Define a loss function that measures how close ¥
1S to Y, 1.e., a function of the residual error:

N N
L£(6) = Z@(i) —y@)2 = Z(mi(@ _ ()2
i=1 i=1
Written in =~ — HXH - yﬂ%

matrix form _— (Xg _ y)T(XQ _ y)
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Example: Least Squares Regression — Gradient

Find parameter values 0);sg that minimize our least squares loss function scaled
by number of examples N, i.e., the Mean Squared Error (MSE):

N
1 1 . .
_ : _ T(@) _  ())2
O\isE arg;mn 2NLI(H) TN 75521(6’ X y*)
Require gradient of £(0) to perform Gradient Descent:

N

1 ) 1 . .
— — T _ ., (9))2
Von£O) =550 15N ;(9 XY=y

~

Summer 2022 OPTIMIZATION & GD



Example: Least Squares Regression — Gradient Update

ST 0
1. Initialize (%) Average scaling for MSE,

. 2 cancels out in derivative
2. Repeat until convergence:

Vector

Batch GD derivative

t+1) t t
update rule — 0T =9 oV (9( )) /

N
9<t>a< S (0TO%0) — )% <7:>>

1=1

1 Equivalent
— 0\ — @’ NXT (XO(t) — y) matrix
derivative

3. When g(0) = 0, then we have derived 68* using GD
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Example: Least Squares Regression — Analytical Solution

Alternatively, we can solve the least squares regression problem by setting the
gradient to O:

VL(0) = XT(X6 —y)
= XTX0-XTy=0 = XTX0=XTy

Hence can directly compute the optimal 6@* using the closed-form solution:

6" = (XTX) 'XTy
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Least Squares GD vs Analytical Solution

* Analytical solution to directly compute optimal minimum

0" = (XTX) 'XTy

® Least Squares GD
v Linear complexity O(N)
v Generally applicable

x  Need to select parameters, e.g.,
learning rate/step size a

x  Might get stuck in local optima

* Analytical Solution
v No parameter tuning
v QGives global optimum
x  Not generally applicable
x  Poor complexity O(Nn?)
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Coding Break
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Stochastic Gradient Descent — Motivation

* Batch GD: update rule at every step 1s based on entire training set (size N)

N
1
(t+1) — g(t) _ Oy —g® _ o — (o)
6 0 aVL(OY) =80 oz( ;:1 VL (0 ))

\

Per-example loss,
e.g., residual error

* Each update step has O(N) complexity

°* What if N 1s huge, e.g., ~billions of examples?
Memory intensive to process training set in one step (terabytes to store)
Computationally expensive to evaluate loss for N examples at once
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Stochastic Gradient Descent — Noisy Estimate

* Stochastic Optimization: Minimize average value of loss

»C(H) — IEj’z’wUniform{l,...,N} [‘C’L (9)]

* Instead of computing V.L(0) over all N examples, sample a mini-batch set B
of size M (~one to hundreds of examples) uniformly from training set

B = {xY} ~ Uniform{1,...,N} forie{1,...,M}
\

* Compute a noisy estimate of derivative in GD update: Batch size

1
01+ =0 _ oV E;c5[L;(01)] =00 — « (M > ch-(g@)))

1eB
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Stochastic Gradient Descent — Notes

* Terminology depending on batch size M
<+ If M = N then Batch GD

+ IfM <K NbutM # 1 then Mini-batch GD

< If M = 1 then Stochastic GD >

< An epoch 1s a single sweep over all N samples

* Unbiased estimate of gradient; may never exactly “converge” to minimum

® Mini-batch/Stochastic GD makes progress to minimum with each new batch
of examples = GD update complexity is NOT dependent on N

* Draw samples without replacement, i.e., each sample drawn once per epoch
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Batch vs Stochastic Gradient Descent (1)

931

S$507 SSH
= = e

Summer 2022

Opt

b size=1
b size=64
b size=10000

* Oscillatory

RSS Trajectory

behavior of
Stochastic GD_l

Mini-batch &
Batch GD smoot?

convergence

®x  Opt
—— b size=1
—— b size=64

—— b_size=10000 |

-3 -2
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Batch vs Stochastic Gradient Descent (2)

* Memory Efficiency: Stochastic > Batch GD

* Computational Efficiency: Varies

<+ Stochastic GD fast processing per sample but poor use of compute resources
< Batch GD updates all at once (vectorization) but will be slow if N very large

* Convergence Speed: Varies

For very large N, Stochastic > Batch GD as it updates more frequently
Batch GD stable so less oscillations could lead to faster convergence

R/
000

R/
000

* Convergence Guarantees: Varies

X/

< Stochastic oscillates around minima but it can also escape shallow local minima

Mini-batch GD best of both worlds
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Example: Least Squares Regression — Mini-batch GD

1. Initialize §(°)
2. Batchify dataset: By ~ Uniform{1,..., N}

3. Repeat until convergence:

— For each b in total number of batches:

U =0 — aVEies, [£:(6)

Batch size M may not (t) ( T(£) () (i)\ = (4)
be constant so write as =0" —« ‘B ‘ Z 0 —Y )
cardinality |By | instead 1€By

4. When g(0) ~ 0, then we have derived 8* using mini-batch GD
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Coding Break
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Improving on Gradient Descent
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Feature Scaling

° Ensure input features x4, x,, ..., x,, arc similarly scaled - Faster GD

Before Feature Scaling After Feature Scaling
20 = 20
15 =+ 15 -
Apply transformation 10 4 10 - Imagine x4 in range
to both training & 2 02 7100, 10000] while
test data > T > X, in range [0,10]
0 = i i | 0
0O 5 10 15 20
01
°* Min-max normalization: ® Standardization:
(i) x§i) — min (4) :cg-i) — W
Ts = , e [0,1] Ty = mean 0, stddev 1
J max x,; — min z; J 0
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Momentum

* GD is slow in flat regions = how to speed up? RSS Trajectory

® Opt

— SED steps=253

—— SGD+Moment. steps=71 |

* Add a momentum term to update:
ottt — g(t) _ 4, (D)

m(t—l_l) = /Bm(t) _I_ Vﬁ(e(t)) ; \’\ / SGD + Momentii

, , , M ‘ accelerates gradient
* Simple to implement in practice ('] — 8) \ vectors & compensates
| for variance
* View m{*D like a moving average of past v
gradients with new 8 scaling factor : \ “ Mg
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Learning Rate Scheduling

® Vary parameter a; over time (learning rate scheduling)

A A A\ Scheduled
a too small a too large
L(6) L(6) L(6) ay
> > >

0.10 —lE

arning rate

0.08 -

* Example: piecewise constant schedule .|

=J

ar = a; if t; <t <tig T_\l

0.00 1
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Second Order Methods

* First-order methods computationally cheap as only use gradient but slow
* Second-order methods incorporate curvature to for faster convergence

* Example: Newton’s method Newton Step H™' x g
A

g+l — g(t) _ &!(VQE(H(t)))_1V£(9<t>)\

* Fast convergence but inverse H™!is expensive for high n

* Quasi-Newton methods approx. H™!

Still difficult to estimate Hessian for noisy gradient estimates as in SGD

Stochastic/Mini-batch GD most popular in machine/deep learning
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Constrained Optimization

* Can solve equality constrained problems by forming a Lagrangian

min £(6) s.t. cice(6) =0 = L(6,))=L(6) + > e
icE
° At stationary point: L£(60,\) =0 Lagmnge\mu liplier 2

* Example on optimizing quadratic forms: for m constraints

max xTAx st [[x|[5=1 = L) =xTAx+ \(1—-xTx)
XER™
Optimal x* to min/max

VX,C(X, )\) =2ATx -2Xx =0 — Ax = \x quadratic forms are
eigenvectors of A

* KKT conditions generalize to also handle inequality constraints
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Gradient Descent 1in Practice

* Mini-batch GD is an effective optimization algorithm
<+ Most widely used training algorithm in machine learning
< Strikes a good balance between Stochastic and Batch GD

* Watch out for convergence issues and getting stuck in local optima
<+ Poorly set hyperparameters can cause both effects
<+ Scheduling a; 1s good practice

* Scale features

<+ Better & faster GD solution as one feature 1s not dominating the loss objective

* Use momentum
< Simple heuristic that almost always works better than standard GD
<+ Improves convergence speed and may even help escape saddle points
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Concluding Remarks

* Today we explored Batch & Stochastic Gradient Decent (GD)

* Look at “Is regression batch gd.ipynb” for batch GD and
“ls_regression_stochastic_gd.ipynb” for stochastic GD in the context of
least squares (LS) linear regression:

https://github.com/mazrk7/EECE5644 IntroMLPR LectureCode/blob/main/no
tebooks/linear regression/ls regression batch gd.ipynb

https://github.com/mazrk7/EECE5644 IntroMLPR LectureCode/blob/main/no
tebooks/linear regression/ls regression stochastic gd.ipynb

* Contains examples of momentum & second-order methods

* Questions?
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