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Tentative Course Outline (Wks. 1-2)
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Topics Dates Assignments Additional 
Reading

Course Overview
Machine Learning Basics 07/05 Optional Homework 0 

released on Canvas on 
07/08 but please do NOT 

submit on Canvas

Chpt. 1
Murphy 2012

Foundations: Linear Algebra, 
Probability, Numerical Optimization 

(Gradient Descent), Regression
07/06-12

Stanford LA Review
Stanford Prob. Review
Chpt. 8 Murphy 2022

Quick Python Tutorial 07/12

Homework 1 released on 
Canvas on 07/15

Due 07/25

N/A

Linear Classifier Design, Linear 
Discriminant Analysis and Principal 

Component Analysis (PCA)
07/13-14 Chpts. 9.2 & 20.1

Murphy 2022

Bayesian Decision Theory: 
Empirical Risk Min, Max 

Likelihood (ML), Max a Posteriori
07/14-15

Chpt. 2 
Duda & Hart 2001

Deniz Erdogmus Notes



Probability Recap

Summer 2022 OPTIMIZATION & GD 3

• Independent implies zero covariance and uncorrelated:

• Uncorrelated does NOT imply independent

• Unless multivariate Gaussian:



Numerical Optimization
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Cat | Dog

Model Cat



Optimization Problem
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Objective/Loss Function:
Quantitative measure of performance, 

e.g., error, profit, time etc.

Parameters: Unknown variables of a 
model/function

Optimize: Find set of parameters that 
minimize/maximize objective 

Continuous Optimization:



Local vs Global Optimization
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• Optimal solutions may not exist or may 
not be unique

• Even if they exist, global optima      are 
difficult to recognize and locate

• Local optima assumed acceptable, 
especially in non-linear cases

• Local solutions may be strictly lower or 
equally (flat) to nearby competitors

Strict 
global min.

Flat local 
minima

Strict 
local min.

Strict local maxima

Minimum 
does not exist



Constrained vs Unconstrained Optimization
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• Unconstrained: No constraints on     , can choose any parameter value 

• Constrained: Exist a set of constraints on allowable parameters
 Partition into inequality and equality constraints:

 Feasible set is the subset             that satisfies these constraints
 Constrained optimization formulation: 
 Example: 



What Makes a Local Minimum?
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Measures
curvature

Minimum

Maximum

Saddle Point

Positive 
Curvature

Negative 
Curvature



OK… But HOW do we Optimize          ? 
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Follow the slope
Gradient Descent



Gradient Descent – Intuition
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𝐿𝐿(𝜃𝜃1, 𝜃𝜃2)

• Choose an initial value 𝜽𝜽(0)

𝜽𝜽(0)

• At each iteration, choose a new 𝜽𝜽(𝑡𝑡+1) to decrease
• Repeat until stationary point (minimum) where   

𝜽𝜽(1)

𝜽𝜽(3)

𝜽𝜽∗

𝜽𝜽(5)



Gradient Descent – Algorithm
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Vectorized

𝐿𝐿(𝜃𝜃)

𝜃𝜃(t+1)𝜃𝜃(t)𝜃𝜃∗

𝛼𝛼
Step Size/Learning Rate:

A small value that controls how 
far we move along gradient

Move in direction of 
negative gradient

hence name descent



Gradient Descent – Derivative Direction
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𝜃𝜃 is on the right of minimum
Gradient is positive so update 

rule will decrease 𝜃𝜃

𝜃𝜃 is on the left of minimum
Gradient is negative so 

update rule will increase 𝜃𝜃

𝜃𝜃∗

As we approach 𝜃𝜃∗
slope gets smaller and 
thus steps are smaller



Gradient Descent – Choosing Step Size

Summer 2022 OPTIMIZATION & GD 13

𝜃𝜃∗

𝐿𝐿(𝜃𝜃)

𝑎𝑎 too small then gradient 
descent can be slow

𝜃𝜃∗

𝐿𝐿(𝜃𝜃)

𝑎𝑎 too large then we can 
overshoot minimum, fail to 
converge or even diverge



Gradient Descent – Convergence
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• Strictly convex functions have one global minimum

Convex functions 
“bowl” shaped

Convex Function: no line 
segment joining two points 
along the function lie below 

the graph at any point 



Gradient Descent – Convergence Issues
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• Most functions more complex than convex 
and can cause convergence issues:
 Stop at a local minimum
 Plateau points bring descent to a slow halt

Try multiple random starting locations 𝜽𝜽(0)



Example: Least Squares Regression – Sample Predictions
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Model predictions/hypotheses:

Not actually 
𝑛𝑛-dimensional

For one 
sample



Example: Least Squares Regression – Dataset Predictions 
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For full dataset with 𝑁𝑁 training examples:

Design 
Matrix

For 𝑵𝑵
samples



Example: Least Squares Regression – Loss Function
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Define a loss function that measures how close   
is to   , i.e., a function of the residual error:

Residual Error

Written in 
matrix form



Example: Least Squares Regression – Gradient 
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Require gradient of          to perform Gradient Descent:



Example: Least Squares Regression – Gradient Update 
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Vector 
derivative

Equivalent 
matrix 

derivative

Batch GD 
update rule

Average scaling for MSE, 
2 cancels out in derivative



Example: Least Squares Regression – Analytical Solution
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Least Squares GD vs Analytical Solution
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• Analytical solution to directly compute optimal minimum 

• Analytical Solution
No parameter tuning
Gives global optimum
Not generally applicable
Poor complexity 𝑂𝑂(𝑁𝑁𝑛𝑛2)

• Least Squares GD
Linear complexity 𝑂𝑂 𝑁𝑁
Generally applicable 
Need to select parameters, e.g., 
learning rate/step size 𝑎𝑎
Might get stuck in local optima



Coding Break
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Stochastic Gradient Descent – Motivation
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• Batch GD:  update rule at every step is based on entire training set (size 𝑁𝑁) 

• What if 𝑁𝑁 is huge, e.g., ~billions of examples?
 Memory intensive to process training set in one step (terabytes to store)
 Computationally expensive to evaluate loss for 𝑁𝑁 examples at once

Per-example loss, 
e.g., residual error• Each update step has 𝑂𝑂(𝑁𝑁) complexity



Stochastic Gradient Descent – Noisy Estimate
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• Stochastic Optimization: Minimize average value of loss 

• Compute a noisy estimate of derivative in GD update:

• Instead of computing             over all 𝑁𝑁 examples, sample a mini-batch set 
of size 𝑀𝑀 (~one to hundreds of examples) uniformly from training set

Batch size



Stochastic Gradient Descent – Notes
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• Terminology depending on batch size 𝑀𝑀
 If 𝑀𝑀 = 𝑁𝑁 then Batch GD
 If 𝑀𝑀 ≪ 𝑁𝑁 but 𝑀𝑀 ≠ 1 then Mini-batch GD
 If 𝑀𝑀 = 1 then Stochastic GD
 An epoch is a single sweep over all 𝑁𝑁 samples

• Unbiased estimate of gradient; may never exactly “converge” to minimum

• Mini-batch/Stochastic GD makes progress to minimum with each new batch 
of examples  GD update complexity is NOT dependent on 𝑁𝑁

• Draw samples without replacement, i.e., each sample drawn once per epoch 



Batch vs Stochastic Gradient Descent (1)
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Oscillatory 
behavior of 

Stochastic GD 

Mini-batch & 
Batch GD smooth 

convergence



Batch vs Stochastic Gradient Descent (2)
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• Memory Efficiency: Stochastic > Batch GD

• Computational Efficiency: Varies 
 Stochastic GD fast processing per sample but poor use of compute resources
 Batch GD updates all at once (vectorization) but will be slow if 𝑁𝑁 very large

• Convergence Speed: Varies 
 For very large 𝑁𝑁, Stochastic > Batch GD as it updates more frequently
 Batch GD stable so less oscillations could lead to faster convergence

• Convergence Guarantees: Varies 
 Stochastic oscillates around minima but it can also escape shallow local minima

Mini-batch GD best of both worlds



Example: Least Squares Regression – Mini-batch GD
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Batch size 𝑀𝑀 may not 
be constant so write as 
cardinality |𝐵𝐵𝑏𝑏| instead



Coding Break
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Improving on Gradient Descent
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Feature Scaling
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• Ensure input features 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 are similarly scaled  Faster GD

• Min-max normalization: • Standardization:

Imagine 𝑥𝑥1 in range 
[100, 10000] while 
𝑥𝑥2 in range [0,10]

Apply transformation 
to both training & 

test data



Momentum
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• GD is slow in flat regions  how to speed up?

• Add a momentum term to update:

• Simple to implement in practice

• View              like a moving average of past 
gradients with new 𝛽𝛽 scaling factor

SGD + Momentum 
accelerates gradient 

vectors & compensates 
for variance



Learning Rate Scheduling

Summer 2022 OPTIMIZATION & GD 34

• Vary parameter 𝛼𝛼𝑡𝑡 over time (learning rate scheduling) 

𝜃𝜃∗

𝐿𝐿(𝜃𝜃)
𝛼𝛼 too large

𝜃𝜃∗

𝐿𝐿(𝜃𝜃)
𝛼𝛼 too small

𝜃𝜃∗

𝐿𝐿(𝜃𝜃)
Scheduled

𝛼𝛼𝑡𝑡

• Example: piecewise constant schedule



Second Order Methods
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• First-order methods computationally cheap as only use gradient but slow

• Second-order methods incorporate curvature to for faster convergence

• Example: Newton’s method

• Fast convergence but inverse         is expensive for high 𝑛𝑛

• Quasi-Newton methods approx. 

Newton Step

• Still difficult to estimate Hessian for noisy gradient estimates as in SGD
Stochastic/Mini-batch GD most popular in machine/deep learning



Constrained Optimization
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• Can solve equality constrained problems by forming a Lagrangian

Lagrange multiplier 𝜆𝜆
for 𝑚𝑚 constraints

• At stationary point:

• Example on optimizing quadratic forms:

• KKT conditions generalize to also handle inequality constraints

Optimal 𝑥𝑥∗ to min/max 
quadratic forms are 
eigenvectors of 𝐴𝐴



Gradient Descent in Practice
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• Mini-batch GD is an effective optimization algorithm
 Most widely used training algorithm in machine learning
 Strikes a good balance between Stochastic and Batch GD

• Use momentum
 Simple heuristic that almost always works better than standard GD
 Improves convergence speed and may even help escape saddle points

• Watch out for convergence issues and getting stuck in local optima
 Poorly set hyperparameters can cause both effects
 Scheduling 𝛼𝛼𝑡𝑡 is good practice

• Scale features
 Better & faster GD solution as one feature is not dominating the loss objective



Concluding Remarks
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• Today we explored Batch & Stochastic Gradient Decent (GD)

• Look at “ls_regression_batch_gd.ipynb” for batch GD and 
“ls_regression_stochastic_gd.ipynb” for stochastic GD in the context of 
least squares (LS) linear regression:

https://github.com/mazrk7/EECE5644_IntroMLPR_LectureCode/blob/main/no
tebooks/linear_regression/ls_regression_batch_gd.ipynb

https://github.com/mazrk7/EECE5644_IntroMLPR_LectureCode/blob/main/no
tebooks/linear_regression/ls_regression_stochastic_gd.ipynb

• Contains examples of momentum & second-order methods

• Questions?

https://github.com/mazrk7/EECE5644_IntroMLPR_LectureCode/blob/main/notebooks/linear_regression/ls_regression_batch_gd.ipynb
https://github.com/mazrk7/EECE5644_IntroMLPR_LectureCode/blob/main/notebooks/linear_regression/ls_regression_stochastic_gd.ipynb
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