EECE 5644: Probability Theory

Mark Zolotas

E-mail: m.zolotas@northeastern.edu

Webpage: https://coe.northeastern.edu/people/zolotas-mark/

Tentative Course Outline (Wks. 1-2)

Topics	Dates	Assignments	Additional Reading
Course Overview Machine Learning Basies	07/05	Optional Homework 0 released on Canvas on 07/08 but please do NOT submit on Canvas	Chpt. 1 Murphy 2012
Foundations: Linear Algebra, Probability, Numerical Optimization (Gradient Descent), Regression	07/06-11		Stanford LA Review Stanford Prob. Review Chpt. 8 Murphy 2022
Quick Python Tutorial	07/12	Homework 1 released on Canvas on $07 / 15$ Due 07/25	N/A
Linear Classifier Design, Linear Discriminant Analysis and Principal Component Analysis (PCA)	07/13-14		Chpts. 9.2 \& 20.1 Murphy 2022
Bayesian Decision Theory: Empirical Risk Min, Max Likelihood (ML), Max a Posteriori	07/14-15		Chpt. 2 Duda \& Hart 2001 Deniz Erdogmus Notes

Linear Algebra Recap

- Inner product:

$$
\mathbf{x} \cdot \mathbf{y}=\sum_{i=1}^{n} x_{i} y_{i}=\mathbf{x}^{\top} \mathbf{y}=\mathbf{y}^{\top} \mathbf{x}
$$

- Eigenvalues/vectors for symmetric, square $\mathbf{A}=\mathbf{A}^{\top} \in \mathbb{R}^{n \times n}$

$$
\mathbf{A} \mathbf{u}_{i}=\lambda_{i} \mathbf{u}_{i} \quad \text { for } i \in 1, \ldots, n
$$

- In matrix form:
"diagonilizable" orthogonality

$$
\mathbf{A} \mathbf{U}=\mathbf{U} \boldsymbol{\Lambda} \xrightarrow[\text { if } \mathbf{U}^{-1} \text { exists }]{ } \mathbf{A}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{-1} \longrightarrow \text { if } \mathbf{U}^{\top} \mathbf{U}=\mathbf{I}
$$

- Positive definiteness (PD) for $\mathbf{A}=\mathbf{A}^{\top} \in \mathbb{R}^{n \times n}$

$$
\mathbf{A}>0 \text { iff } \mathbf{x}^{\top} \mathbf{A} \mathbf{x}>0, \forall \mathbf{x} \in \mathbb{R}^{n} \backslash\{\mathbf{0}\} \text { OR iff } \lambda_{i}>0 \forall i
$$

Probability Theory

Two Perspectives on Probability

- Frequentist: Concerned with repeated events and the frequency with which we expect to observe data, given some hypothesis about the world
* Data treated as random, repeated trials might generate different data
* Model parameters take a single value ("point estimate")
* Parameters typically estimated by maximum likelihood of data

Bayesian: Interested in the plausibility or uncertainty of a hypothesis, given evidence of data and our prior beliefs

* Data treated as fixed, can make inferences about one-off events
* Model parameters are random variables that have a probability distribution
* Parameters estimated from data and prior knowledge
- Model parameters $=$ Configuration variables learned from the data

Axioms of Probability

- Define an event A as a binary variable that holds or does not (true/false) * E.g. "it will be sunny tomorrow", "I have a headache", "I rolled a 6 in dice" * Each event has a probability $\operatorname{Pr}(A)$ of being true
- Behind probability theory are 3 foundational axioms (Kolmogorov):

1. All probabilities must satisfy $0 \leq \operatorname{Pr}(A) \leq 1$
2. Valid event propositions (tautologies) have $\operatorname{Pr}(A)=1$ and unsatisfiable facts (contradictions) have $\operatorname{Pr}(A)=0$
3. The union (disjunction) of two events is given by:

$$
\operatorname{Pr}(A \vee B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)-\operatorname{Pr}(A / B) \quad \begin{gathered}
\text { If mutually } \\
\text { exclusive }
\end{gathered}
$$

Conditional Probability

- Union/Disjunction: $\operatorname{Pr}(A \vee B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)-\operatorname{Pr}(A \wedge B)$
- Joint Probability: $\operatorname{Pr}(A \wedge B)=\operatorname{Pr}(A, B)=\operatorname{Pr}(A) \operatorname{Pr}(B) \quad$ If independent
- Conditional Probability: $\operatorname{Pr}(A \mid B)=\frac{\operatorname{Pr}(A, B)}{\operatorname{Pr}(B)}$

Random Variable (RV)

Def. Is a real-valued function, $X: \mathcal{X} \rightarrow \mathbb{R}$, that can take on values defined by a set of all possible outcomes, \mathcal{X}, known as the sample space. An event is a set of random outcomes from this sample space.

Example: If X is the result of a die rolled, then $\mathcal{X}=\{1,2, \ldots, 6\}$, and the event of "rolling a 1 " is denoted as $X=1$, the event of "rolling even" is $X \in\{2,4,6\}$, the event of "rolling between 3 and 5 " is $3 \leq X \leq 5$, etc.

Discrete Random Variables

- If sample space \mathcal{X} is a finite number of distinct values, then X is discrete
- Probability of the event that X takes on value x is denoted as $\operatorname{Pr}(X=x)$
- Directly express this probability using a probability mass function (PMF)

$$
\begin{array}{|l|l}
\hline p_{X}(x)=\operatorname{Pr}(X=x) & 0 \leq p_{X}(x) \leq 1 \\
\text { a toss heads (1) or tails (0) } & \sum_{x \in \mathcal{X}} p_{X}(x)=1 \\
\hline
\end{array}
$$

- Example: X models a coin toss heads (1) or tails (0)

Examples

- What about multiple random events?
- Example: X models number of heads in n coin tosses, what is the probability of k heads?

$$
\operatorname{Pr}(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k} \quad \text { Binomial RV } \quad X \sim \operatorname{Bin}(n, p)
$$

- Example: X models sum of two fair dice, what is $p_{X}(x)$ for $X \in\{2, \ldots 12\}$?

$$
\begin{aligned}
& \operatorname{Pr}(X=2)=\frac{1}{6} \times \frac{1}{6}=\frac{1}{36} \\
& \begin{array}{cc}
\operatorname{Pr}(X=4)=\frac{3}{36} \quad \begin{array}{c}
\text { What is highest } \\
p_{X}(x) ?
\end{array}
\end{array} \\
& \operatorname{Pr}(X=11)=\frac{2}{36}
\end{aligned}
$$

Multiple Random Variables

- Let X and Y be discrete RVs, then the joint distribution is:

$$
p_{X Y}(x, y)=\operatorname{Pr}(X=x, Y=y) \quad \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p_{X Y}(x, y)=1
$$

- Define marginal distribution for X :

> Process of
$\begin{gathered}\text { Sum/Total } \\ \text { Probability Rule }\end{gathered} p_{X}(x)=\sum_{y \in \mathcal{Y}} p_{X Y}(x, y) \quad \begin{aligned} & \text { summing out other } \\ & \text { "marginalization" }\end{aligned}$

- Define conditional distribution:

> Product Rule
$\begin{gathered}\text { Distribution over } Y \\ \text { given that } X=x\end{gathered} \quad p_{Y \mid X}(y \mid x)=\frac{p_{X, Y}(x, y)}{p_{X}(x)} \Longleftrightarrow p_{X, Y}(x, y)=\underline{p_{Y \mid X}(y \mid x) p_{X}(x)}$

Chain Rule of Probability

- Generalize product rule to n variables:

Repeatedly apply rule of conditional

- Break down joint distribution into factorized form of conditionals until marginal in isolation; useful in machine learning

Conditional Independence

- Reminder of unconditional independence relation:

$$
X \Perp Y \Longleftrightarrow p_{X, Y}(x, y)=p_{X}(x) p_{Y}(y)
$$

- Generalized to n variables: $\quad p_{X_{1}, \ldots, X_{n}}\left(\mathbf{x}_{1: n}\right)=\prod_{i}^{n} p_{X_{i}}\left(x_{i}\right)$
- Rely more frequently on conditional independence (CI) between RVs:

$$
X \Perp Y \mid Z \Longleftrightarrow p(x, y \mid z)=p(x \mid z) p(y \mid z)
$$

- Example: Look at $3^{\text {rd }}$ term from left of chain rule $p\left(x_{3} \mid x_{1}, x_{2}\right)$

$$
\left.p\left(x_{3} \mid x_{2}, x_{1}\right)=\frac{p\left(x_{3}, x_{2} \mid x_{1}\right)}{p\left(x_{2} \mid x_{1}\right)}=\frac{p\left(x_{3} \mid x_{1}\right) p\left(x_{2} \mid x_{1}\right)}{p\left(x_{2} \mid x_{1}\right)} \quad x_{3} \Perp x_{2} \right\rvert\, x_{1}
$$

Discrete RV Examples

- $X \sim \operatorname{Bernoulli}(p)$ (where $0 \leq p \leq 1$): one if a coin with heads probability p comes up heads, zero otherwise.

$$
p(x)= \begin{cases}p & \text { if } p=1 \\ 1-p & \text { if } p=0\end{cases}
$$

- $X \sim \operatorname{Binomial}(n, p)$ (where $0 \leq p \leq 1$): the number of heads in n independent flips of a coin with heads probability p.

$$
p(x)=\binom{n}{x} p^{x}(1-p)^{n-x}
$$

- $X \sim \operatorname{Geometric}(p)$ (where $p>0$): the number of flips of a coin with heads probability p until the first heads.

$$
p(x)=p(1-p)^{x-1}
$$

- $X \sim \operatorname{Poisson}(\lambda)($ where $\lambda>0)$: a probability distribution over the nonnegative integers used for modeling the frequency of rare events.

$$
p(x)=e^{-\lambda} \frac{\lambda^{x}}{x!}
$$

Continuous Random Variables

- If sample space \mathcal{X} is NOT countable, then $X \in \mathbb{R}$ is continuous
- Can count intervals along this real line
- Define cumulative density function (CDF) as:

$$
P_{X}(x)=\operatorname{Pr}(X \leq x)
$$

- Probability density function (PDF) as derivative:

$$
p_{X}(x)=\frac{d}{d x} P_{X}(x)
$$

Note:

* $\quad \mathrm{CDF}$ non-decreasing $\Rightarrow p_{X}(x) \geq 0$
* If CDF not differentiable, neither exist
- $p_{X}(x) \neq \operatorname{Pr}(X=x)$, possible for $p_{X}(x)>1$

Continuous Uniform Distribution

$$
\begin{gathered}
X \sim \operatorname{Uniform}(a, b) \quad p_{X}(x)=\left\{\begin{array}{ll}
\frac{1}{b-a} & \text { for } x \in[a, b] \\
0 & \text { otherwise }
\end{array}\right. \text { Takes a random }
\end{gathered}
$$ value uniformly in the range $[a, b]$

Gaussian (Normal) Distribution

$$
X \sim \mathcal{N}\left(\mu, \sigma^{2}\right) \quad p_{X}(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

Analogous Continuous Distributions

- Distribution rules still apply to continuous RVs and look similar
- Except integrals rather than sums, e.g., for marginal PDF:

$$
p_{X}(x)=\int_{-\infty}^{\infty} p_{X Y}(x, y) d y \quad \begin{gathered}
\text { "Integrating" out } \\
\text { the other variable }
\end{gathered}
$$

Bayes’ Rule

- Most important formula in probabilistic machine learning:

$$
\operatorname{Pr}(A \mid B)=\frac{\operatorname{Pr}(B \mid A) \operatorname{Pr}(A)}{\operatorname{Pr}(B)}
$$

- Follows directly from product rule:

Set expressions equal and rearrange to derive

$$
\begin{aligned}
& \operatorname{Pr}(A, B)=\operatorname{Pr}(A \mid B) \operatorname{Pr}(B) \\
& \operatorname{Pr}(B, A)=\operatorname{Pr}(B \mid A) \operatorname{Pr}(A)
\end{aligned}
$$

Coding Break

Expectation

- What are μ and σ^{2} exactly? $\quad X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$
- Define expectation of an RV as:

$$
\mathbb{E}[X]=\sum_{\substack{x \in \mathcal{X} \\ \text { Discrete }}} x p_{X}(x) \quad \unlhd \mathbb{E}[X]=\int_{-\infty}^{\infty} x p_{X}(x) d x
$$

- "Weighted average" of all possible outcomes for an RV
- Properties:

Moments

- Refer to summary statistics as moments
- Let the $q \in \mathbb{Z}^{+}$moment for a continuous RV be written as:

$$
\mathbb{E}\left[X^{q}\right]=\int_{-\infty}^{\infty} x^{q} p_{X}(x) d x
$$

- Can also define central moments (shifted about the mean)

$$
\mathbb{E}\left[(X-\mathbb{E}[X])^{q}\right]=\int_{-\infty}^{\infty}(x-\mu)^{q} p_{X}(x) d x
$$

- Recall that variance σ^{2} is "spread" or concentration about μ

Variance

- Unique case where $q=2$ central moment is σ^{2} :

$$
\operatorname{Var}[X]=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]=\int_{-\infty}^{\infty}(x-\mu)^{2} p_{X}(x) d x
$$

- Alternative expression:

$$
\begin{aligned}
\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right] & =\mathbb{E}\left[X^{2}-2 \mathbb{E}[X] X+\mathbb{E}[X]^{2}\right] \\
& =\mathbb{E}\left[X^{2}\right]-2 \mathbb{E}[X] \mathbb{E}[X]+\mathbb{E}[X]^{2} \\
& =\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2} \underbrace{}_{\mathbb{E}}[a]=a \text { for any } a \in \mathcal{R}
\end{aligned}
$$

- Rearrange for $2^{\text {nd }}$ moment:

$$
\mathbb{E}\left[X^{2}\right]=\sigma^{2}+\mu^{2}
$$

Covariance

- Is a measure of the degree to which two variables are related
- Using expectation, the covariance for X and Y is defined as:

$$
\operatorname{Cov}[X, Y]=\mathbb{E}[(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])]
$$

- Can derive:

$$
\operatorname{Cov}[X, Y]=\underset{\sim}{\mathbb{E}[X, Y]}-\mathbb{E}[X] \mathbb{E}[Y] \quad \begin{gathered}
\text { of joint } \\
\text { distribution }
\end{gathered}
$$

$$
\mathbb{E}[X, Y]=\mathbb{E}[X] \mathbb{E}[Y] \Longleftrightarrow X \Perp Y
$$

- Properties:

$$
\begin{gathered}
\operatorname{Cov}[X, X]=\operatorname{Var}[X] \\
X \Perp Y \Longrightarrow \operatorname{Cov}[X, Y]=0
\end{gathered}
$$

Independent

Correlation

- Pearson correlation coefficient:

$$
\rho=\operatorname{Corr}[X, Y]=\frac{\operatorname{Cov}[X, Y]}{\sigma_{X} \sigma_{Y}} \in[-1,1]
$$

- Normalized measure of covariance
- Independent implies uncorrelated:

$$
p_{X Y}(X, Y)=p_{X}(X) p_{Y}(Y) \Longrightarrow \operatorname{Corr}[X, Y]=0
$$

- Uncorrelated does NOT imply independent

$$
\operatorname{Corr}[X, Y]=0 \nRightarrow p_{X Y}(X, Y)=p_{X}(X) p_{Y}(Y)
$$

Visualizing Correlation

Positive	1	0.8	0.4	0	-0.4	-0.8	-1	Negative
Correlation								Correlation
	1	1	1	Undefined	-1	-1	-1	
		,	\cdots	--m-				
	0	0	0	0	0	0	0	

Random Vectors

- Stack n variables into a vector: $\mathbf{x}=\left[\begin{array}{c}X_{1} \\ \vdots \\ X_{n}\end{array}\right] \in \mathbb{R}^{n}$
- Expected value of a random vector:

$$
\begin{aligned}
& \mathbb{E}[\mathbf{x}]=\int_{-\infty}^{\infty} \mathbf{x} p_{X_{1}, \ldots, X_{n}}(\mathbf{x}) d x_{1} \ldots d x_{n} \\
&=\left[\begin{array}{c}
E\left[X_{1}\right] \\
\vdots \\
E\left[X_{n}\right]
\end{array}\right]=\boldsymbol{\mu} \\
& \text { Mean } \\
& \text { Vector }
\end{aligned}
$$

Covariance Matrix

- Is an $n \times n$ square matrix $\boldsymbol{\Sigma} \in \mathbb{R}^{n \times n}$ for \mathbf{x} with entries $\Sigma_{i j}=\operatorname{Cov}\left[X_{i}, X_{j}\right]$
- Defined as: $\quad \boldsymbol{\Sigma}=\operatorname{Cov}[\mathbf{x}]=\mathbb{E}\left[(\mathbf{x}-\mathbb{E}[\mathbf{x}])(\mathbf{x}-\mathbb{E}[\mathbf{x}])^{\top}\right]$

$$
\begin{aligned}
E\left[x x^{\top}\right]=\sum+\mu \mu^{\top} & =\left[\begin{array}{ccc}
\operatorname{Var}\left[X_{1}\right] & \cdots & \operatorname{Cov}\left[X_{1}, X_{n}\right] \\
\vdots & \ddots & \vdots \\
\operatorname{Cov}\left[X_{n}, X_{1}\right] & \cdots & \operatorname{Var}\left[X_{n}\right]
\end{array}\right] \\
& =\underline{\mathbb{E}\left[\mathbf{x x}^{\top}\right]-\boldsymbol{\mu} \boldsymbol{\mu}^{\top}}
\end{aligned}
$$

- Useful properties:

$$
\begin{array}{cc}
\boldsymbol{\Sigma}=\boldsymbol{\Sigma}^{\boldsymbol{\top}} & \text { Symmetric } \\
\boldsymbol{\Sigma} \geq 0 & \text { PSD }
\end{array}
$$

Multivariate Gaussian Distribution

$$
\begin{gathered}
x \sim \mathcal{N}(\mu, \Sigma) \quad \mathbf{x} \in \mathbb{R}^{n} \quad \boldsymbol{\mu} \in \mathbb{R}^{n} \quad \boldsymbol{\Sigma} \in \mathbb{R}^{n \times n} \\
\mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) \quad p_{X_{1}, \ldots, X_{n}}(\mathbf{x})=\frac{1}{(\underbrace{}_{\begin{array}{c}
\text { Normalization } \\
\text { constant }
\end{array}} \exp \left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{\frac{1}{2}}\right)}(\mathbf{x}-\boldsymbol{\mu}))
\end{gathered}
$$

Bivariate Gaussian Distribution

$$
\left.\begin{array}{c}
\mathbf{x} \in \mathbb{R}^{2} \quad \boldsymbol{\mu} \in \mathbb{R}^{2} \quad \boldsymbol{\Sigma} \in \mathbb{R}^{2 \times 2} \\
{\left[\begin{array}{c}
X \\
Y
\end{array}\right] \sim \mathcal{N}\left(\left[\begin{array}{c}
\mu_{X} \\
\mu_{Y}
\end{array}\right], \boldsymbol{\Sigma}\right)} \\
\boldsymbol{\Sigma}=\left[\begin{array}{cc}
\sigma_{X}^{2} & \operatorname{Cov}[X, Y] \\
\operatorname{Cov}[Y, X] & \sigma_{Y}^{2}
\end{array}\right] \\
=\left[\begin{array}{cc}
\sigma_{X}^{2} & \rho \sigma_{X} \sigma_{Y} \\
\rho \sigma_{X} \sigma_{Y} & \sigma_{Y}^{2}
\end{array}\right] \\
\rho
\end{array}\right]=\operatorname{Corr}[X, Y]=\frac{\sigma_{X Y}^{2}}{\sigma_{X} \sigma_{Y}}, ~ l
$$

Why Gaussian?

- Only two parameters: μ and σ^{2}
- Central Limit Theorem (CLT): Sum of independent RVs are approximately Gaussian; good choice for modeling "noise"
- Gaussian can be shown to make the "least number of assumptions" (max entropy); good default choice
- Analytical form that we can evaluate integrals over
- Lots of nice useful properties...

$$
\begin{gathered}
\operatorname{Corr}[X, Y]=0 \Longleftrightarrow X \Perp Y \\
\text { Equivalence of uncorrelated } \\
\text { and independent }
\end{gathered}
$$

Resources

Probability Review

https://cs229.stanford.edu/section/cs229-prob.pdf

Concluding Remarks

- Look at "sample_univariate_continuous.ipynb" notebook on sampling from the univariate uniform and normal continuous distributions:

https://github.com/mazrk7/EECE5644 IntroMLPR LectureCode/blob/main/no tebooks/foundations/sample univariate continuous.ipynb

- Also check out "sample_bivariate_gaussian.ipynb" for better intuition on a multivariate distribution

https://github.com/mazrk7/EECE5644 IntroMLPR LectureCode/blob/main/no tebooks/foundations/sample bivariate gaussian.ipynb

- Questions?

