EECE 5644: Linear Algebra

Mark Zolotas

E-mail: <u>m.zolotas@northeastern.edu</u> Webpage: <u>https://coe.northeastern.edu/people/zolotas-mark/</u>

Tentative Course Outline (Wks. 1-2)

Topics	Dates	Assignments	Additional Reading
Course Overview Machine Learning Basics	07/05	Optional Homework 0 released on Canvas on 07/08 but please do NOT submit on Canvas	Chpt. 1 Murphy 2012
Foundations: Linear Algebra, Probability, Numerical Optimization (Gradient Descent), Regression	07/06-11		Stanford LA Review Stanford Prob. Review Chpt. 8 Murphy 2022
Quick Python Tutorial	07/12	Homework 1 released on Canvas on 07/15 Due 07/25	N/A
Linear Classifier Design, Linear Discriminant Analysis and Principal Component Analysis (PCA)	07/13-14		Chpts. 9.2 & 20.1 Murphy 2022
Bayesian Decision Theory: Empirical Risk Min, Max Likelihood (ML), Max a Posteriori	07/14-15		Chpt. 2 Duda & Hart 2001 Deniz Erdogmus Notes

Intro Recap

Let $\mathcal{D} = \{(\mathbf{x}^{(i)}, y^{(i)})\}_{i=1}^N$, N training samples Inputs or **features** $\mathbf{x} \in \mathcal{X} = \mathbb{R}^n$ **Classification:** discrete valued outputs or **labels** $y \in \{1, \dots, C\}$

Linear Algebra

Sources: https://hadrienj.github.io/posts/Deep-Learning-Book-Series-2.1-Scalars-Vectors-Matrices-and-Tensors/

Summer 2022

- Are **single** real numbers
- Integers (7, 42), rational numbers $\left(\frac{2}{3}, 0.73\right)$, irrational numbers $\left(\sqrt{7}, \pi\right)$, etc.
- Written in lowercase and *italics*:

$$x, n, d \in \mathbb{R}$$

Vectors

- Are 1-D arrays of numbers
- Numbers can be binary, integer, real etc.
- Written in lowercase and **bold**:

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^n \qquad \mathbf{x}^{\mathsf{T}} = \begin{bmatrix} x_1 \ x_2 \ \dots \ x_n \end{bmatrix}$$

- Are **2-D** array of numbers
- Written in UPPERCASE and **bold**:

• Vectorized:

$$\operatorname{vec}(\mathbf{A}) = [\mathbf{A}_{:,1}; \mathbf{A}_{:,2}; \dots; \mathbf{A}_{:,n}] \in \mathbb{R}^{mn \times 1}$$

Tensors

• Are *n*-D arrays of numbers

• Can have n = 0 (scalar), n = 1 (vector), n = 2 (matrix), or n > 2

Summer 2022

Matrix Transpose

• "Flipping" the rows and columns of a matrix (across main diagonal)

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} \in \mathbb{R}^{2 \times 3} \quad \mathbf{A}^{\mathsf{T}} = \begin{bmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \\ a_{13} & a_{23} \end{bmatrix} \in \mathbb{R}^{3 \times 2}$$
$$\mathbf{A}_{ij} = (\mathbf{A}^{\mathsf{T}})_{ji}$$

- Some important properties:
 - $(\mathbf{A}^{\intercal})^{\intercal} = \mathbf{A}$ $(\mathbf{A}\mathbf{B})^{\intercal} = \mathbf{B}^{\intercal}\mathbf{A}^{\intercal}$ $(\mathbf{A} + \mathbf{B})^{\intercal} = \mathbf{A}^{\intercal} + \mathbf{B}^{\intercal}$

• Symmetric matrices:

$$\mathbf{A}^{\intercal} = \mathbf{A} \in \mathbb{R}^{n \times n}$$

Inner/Dot Product (1)

• Between vectors

$$\mathbf{x} \cdot \mathbf{y} = \sum_{i=1}^{n} x_i y_i = \mathbf{x}^\mathsf{T} \mathbf{y} = \mathbf{y}^\mathsf{T} \mathbf{x}$$

• Between matrices $\mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{B} \in \mathbb{R}^{n \times p}$

Inner/Dot Product (2)

• Angle between two vectors:

- Between two vectors: $\mathbf{x}\mathbf{y}^{\mathsf{T}}$
- Can have different dimensions $\mathbf{x} \in \mathbb{R}^m, \mathbf{y} \in \mathbb{R}^n$

• Linear transformation

$$f: \mathcal{X} \to \mathcal{Y} \text{ such that } f(\mathbf{x} + \mathbf{y}) = f(\mathbf{x}) + f(\mathbf{y}) \text{ and } f(a\mathbf{x}) = af(\mathbf{x}) \text{ for all } \mathbf{x}, \mathbf{y} \in \mathcal{X}$$

$$f\left(\mathsf{q}_1 \times_1 + \dots + \mathsf{q}_n \times_n\right) = \mathsf{q}_1 f\left(\mathsf{x}_1\right) + \dots + \mathsf{q}_n f\left(\mathsf{x}_n\right)$$

$$\bigvee_{\mathsf{Uinear}} \bigcup_{i \text{ stributes}} \mathsf{D}_{i \text{ stributes}}$$

• Example: expectation operator \mathbb{E}

$$f_1, f_2 \implies f_1(f_2(x)) = f_2(f_1(x))$$

Linear Independence

Def. If no vector in a set $\{\mathbf{x}_1, \ldots, \mathbf{x}_n\}$ can be expressed as a linear combination of the others.

$$\sum_{i}^{n} a_{i} \mathbf{x}_{i} = 0 \implies a_{1} = a_{2} = \dots = a_{n} = 0$$
$$\begin{bmatrix} | & | & | \\ \mathbf{x}_{1} & \mathbf{x}_{2} & \mathbf{x}_{3} \\ | & | & | \end{bmatrix} \begin{bmatrix} a_{1} \\ a_{2} \\ a_{3} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Conversely, \mathbf{x}_n is *linearly dependent* on $\{\mathbf{x}_1, \ldots, \mathbf{x}_{n-1}\}$ if there exist scalars $\{a_1, \ldots, a_{n-1}\}$ such that:

$$\mathbf{x}_n = \sum_{i}^{n-1} a_i \mathbf{x}_i$$

Linear Independence: Examples

$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \end{bmatrix}$$

- Interpretation of a vector's "length" $||\mathbf{x}|| \leq \frac{1}{2} \int \frac{1$
- Formally $||\mathbf{x}||$ is a function $\mathbb{R}^n \to \mathbb{R}$ that must satisfy <u>4 properties</u>:
 - 1. $||\mathbf{x}|| \ge 0$ for any $\mathbf{x} \in \mathbb{R}^n$ (non-negativity)

2.
$$||\mathbf{x}|| = 0$$
 iff $\mathbf{x} = \mathbf{0}$ (definiteness)

- 3. $||a\mathbf{x}|| = a||\mathbf{x}||, \forall a \in R \ (absolute \ homogeneity)$
- 4. $||\mathbf{x} + \mathbf{y}|| \le ||\mathbf{x}|| + ||\mathbf{y}||$ (triangle inequality)

Vector Norms (2)

• General family of metrics for $\mathbf{x} \in \mathbb{R}^n$ known as L_p norm:

$$||\mathbf{x}||_p = (|x_1|^p + \ldots + |x_n|^p)^{\frac{1}{p}} = \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}$$

- Most popular (Euclidean): $||\mathbf{x}||_2 = \sqrt{\sum_{i=1}^n x_i^2}$
- Others common in Machine Learning: Manhattan: $||\mathbf{x}||_1 = \sum_{i=1}^n |x_i|$ Max norm: $||\mathbf{x}||_{\infty} = \max_i |x_i|$ 0-norm: $||\mathbf{x}||_0 = \text{count of non-zero } x_i$

Square Matrix Properties

• Trace:
$$\operatorname{tr}(\mathbf{A}) = \sum_{i=1}^{n} a_{ii}$$

• Trace: $\operatorname{tr}(\mathbf{A}) = \sum_{i=1}^{n} a_{ii}$
Cyclic permutation property: $\operatorname{tr}(\mathbf{ABC}) = \operatorname{tr}(\mathbf{A}) + \operatorname{tr}(\mathbf{B})$
• Determinant: $\operatorname{det}(\mathbf{A})$ or $|\mathbf{A}|$
 $|\mathbf{A}| = |\mathbf{A}^{\mathsf{T}}|$
 $|\mathbf{A}| = c^n |\mathbf{A}|$
 $|\mathbf{A}| = 0$ iff \mathbf{A} singular, else $|\mathbf{A}^{-1}| = 1/|\mathbf{A}|$
For 2 × 2 matrix: $\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$
 $|\mathbf{A}| = a_{11}a_{22} - a_{12}a_{21}$

Trace Trick

• Trace trick to rewrite scalar dot product: $\mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x}$

- Dimension of the column space of $\mathbf{A} \implies$ no. of **linearly independent** cols.
- Column rank same as row rank: $rank(\mathbf{A}) = rank(\mathbf{A}^{\intercal})$
- For $\mathbf{A} \in \mathbb{R}^{m \times n}$: $\operatorname{rank}(\mathbf{A}) \le \min(m, n)$
- Full $rank(\mathbf{A}) = min(m, n)$ else rank deficient

$$\operatorname{rank}\left(\begin{bmatrix}1 & 2 & 3\\ 2 & 4 & 6\end{bmatrix}\right) = 1 \qquad \operatorname{rank}\left(\begin{bmatrix}1 & -3\\ 1 & 2\end{bmatrix}\right) = 2$$

- Inverse of a square matrix, $\mathbf{A} \in \mathbb{R}^{n \times n}$, is \mathbf{A}^{-1} such that: $\mathbf{A}\mathbf{A}^{-1} = \mathbf{I}$
- Exists iff $|\mathbf{A}| \neq 0$ (full rank), else referred to as a singular matrix

• Properties:
$$(\mathbf{A}^{-1})^{-1} = \mathbf{A} \quad (a\mathbf{A})^{-1} = \frac{1}{a}\mathbf{A}^{-1} \quad (\mathbf{A}^{\intercal})^{-1} = (\mathbf{A}^{-1})^{\intercal}$$

• For a 2×2 matrix:

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \quad \mathbf{A}^{-1} = \frac{1}{|\mathbf{A}|} \begin{bmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{bmatrix}$$

System of Linear Equations

$$3x_1 + 8x_2 = 5$$
$$4x_1 + 11x_2 = 7$$

• Matrix representation

Ax = b

$$\mathbf{A} = \begin{bmatrix} 3 & 8\\ 4 & 11 \end{bmatrix} \qquad \mathbf{b} = \begin{bmatrix} 5\\ 7 \end{bmatrix}$$

• If A^{-1} exists

 $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$

Eigenvalue Decomposition (EVD) – Intro

• For $\mathbf{A} \in \mathbb{R}^{n \times n}$, an *eigenvector* $\mathbf{u} \in \mathbb{R}^n$ is a non-zero vector with an associated number, called an *eigenvalue* $\lambda \in \mathbb{R}$, such that: $\mathbf{A}\mathbf{u} = \lambda \mathbf{u}$

• (λ, \mathbf{u}) may be complex-valued, but real-valued for symmetric $\mathbf{A} = \mathbf{A}^{\mathsf{T}}$

• Properties:
$$\operatorname{tr}(\mathbf{A}) = \sum_{i=1}^{n} \lambda_i$$
 $\operatorname{det}(\mathbf{A}) = \prod_{i=1}^{n} \lambda_i$

Eigenvalue Decomposition (EVD) – Matrix Form

• For $\mathbf{A} \in \mathbb{R}^{n \times n}$, there are $n \times (\lambda, \mathbf{u})$ pairs, which can be written as:

$$AU = U\Lambda_{\checkmark} \land = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$$

• If U^{-1} exists, then A is "diagonalizable" so the EVD is: Spectral decomposition $\longrightarrow A = UAU^{-1} = UAU^{T}$ if $A = A^{T}$

Singular Value Decomposition (SVD)

• More general case of rectangular matrices, $\mathbf{A} \in \mathbb{R}^{m \times n}$

• SVD of A:

$$M = USV^{T}$$

 $M = USV^{T}$
 $M = US$

Coding Break

Quadratic Forms & Positive Definiteness

• Given $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $\mathbf{x} \in \mathbb{R}^n$, a quadratic form is the scalar:

$$\mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x} = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_i x_j$$

- Can assume **A** is **symmetric** and:
 - Positive definite (PD) iff $\mathbf{x}^{\intercal} \mathbf{A} \mathbf{x} > 0, \forall \mathbf{x} \in \mathbb{R}^n \setminus \{\mathbf{0}\}, \text{ denoted } \mathbf{A} > 0$
 - Positive semidefinite (PSD) iff $\mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x} \ge 0, \forall \mathbf{x} \in \mathbb{R}^n$, denoted $\mathbf{A} \ge 0$
 - Negative definite (ND) iff $\mathbf{x}^{\intercal} \mathbf{A} \mathbf{x} < 0, \forall \mathbf{x} \in \mathbb{R}^n \setminus \{\mathbf{0}\}, \text{ denoted } \mathbf{A} < 0$
 - Negative semidefinite (NSD) iff $\mathbf{x}^{\intercal} \mathbf{A} \mathbf{x} \leq 0, \forall \mathbf{x} \in \mathbb{R}^{n}$, denoted $\mathbf{A} \leq 0$

Significance of Positive Definiteness

Zero gradient, and Hessian with...

Sources: Goodfellow et al, "Deep Learning", 2016

and some negative

Summer 2022

• Gradient of $f : \mathbb{R}^n \to \mathbb{R}$ at x is the vector of its partial derivatives:

$$\frac{\delta f}{\delta \mathbf{x}} = \nabla_{\mathbf{x}} f = \begin{bmatrix} \frac{\delta f}{\delta x_1} \\ \frac{\delta f}{\delta x_2} \\ \vdots \\ \frac{\delta f}{\delta x_n} \end{bmatrix} \in \mathbb{R}^n$$

• Corresponding 2nd order derivatives are the symmetric **Hessian** matrix:

$$\frac{\delta^2 f}{\delta \mathbf{x}^2} = \nabla_{\mathbf{x}}^2 f = \begin{bmatrix} \frac{\delta^2 f}{\delta x_1^2} & \cdots & \frac{\delta^2 f}{\delta x_1 \delta x_n} \\ \vdots & \ddots & \vdots \\ \frac{\delta^2 f}{\delta x_n \delta x_1} & \cdots & \frac{\delta^2 f}{\delta x_n^2} \end{bmatrix} \in \mathbb{R}^{n \times n}$$

Summary

	Non-singular	Singular
A is	invertible	not invertible
Columns	independent	dependent
Rows	independent	dependent
$\det(\mathbf{A})$	\neq 0	= 0
Ax = 0	one solution $\mathbf{x} = 0$	infinitely many solution
Ax = b	one solution	no solution or infinitely many
A has	n (nonzero) pivots	r < n pivots
A has	full rank $r = n$	rank $r < n$
Column space	is all of \mathbb{R}^n	has dimension $r < n$
Row space	is all of \mathbb{R}^n	has dimension $r < n$
Eigenvalue	All eigenvalues are non-zero	Zero is an eigenvalue of A
A ^T A	is symmetric positive definite	is only semidefinite
Singular value of ${f A}$	has <i>n</i> (positive) singular values	has $r < n$ singular values

Sources: Yuji Oyamada, https://www.slideshare.net/charmie11/comparison-singular-and-nonsingular

Summer 2022

Linear Algebra

https://cs229.stanford.edu/section/cs229-linalg.pdf

https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf

• Notation can appear scary but will get easier with practice

• Look at *"eig_svd.ipynb"* file for NumPy example of EVD & SVD:

https://github.com/mazrk7/EECE5644_IntroMLPR_LectureCode/blob/main/no tebooks/foundations/eig_svd.ipynb

• Questions?