EECE 5644: Linear Algebra

Mark Zolotas

E-mail:m.zolotas@northeastern.edu

Webpage: https://coe.northeastern.edu/people/zolotas-mark/

Tentative Course Outline (Wks. 1-2)

Topics	Dates	Assignments	Additional Reading
Course Overview	Aachine Learning Basies		

Intro Recap

Let $\mathcal{D}=\left\{\left(\mathbf{x}^{(i)}, y^{(i)}\right)\right\}_{i=1}^{N}, N$ training samples
Inputs or features $\mathbf{x} \in \mathcal{X}=\mathbb{R}^{n}$
Classification: discrete valued outputs or labels $y \in\{1, \ldots, C\}$

Linear Algebra

Scalar Vector Matrix Tensor

Scalars

- Are single real numbers
- Integers $(7,42)$, rational numbers $\left(\frac{2}{3}, 0.73\right)$, irrational numbers $(\sqrt{7}, \pi)$, etc.
- Written in lowercase and italics:

$$
x, n, d \in \mathbb{R}
$$

Vectors

- Are 1-D arrays of numbers
- Numbers can be binary, integer, real etc.
- Written in lowercase and bold:

$$
\mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] \in \mathbb{R}^{n} \quad \mathbf{x}^{\top}=\left[\begin{array}{llll}
x_{1} & x_{2} & \ldots & x_{n}
\end{array}\right]
$$

Matrices

- Are 2-D array of numbers
- Written in UPPERCASE and bold:

- Vectorized:

$$
\operatorname{vec}(\mathbf{A})=\left[\mathbf{A}_{:, 1} ; \mathbf{A}_{:, 2} ; \ldots ; \mathbf{A}_{:, n}\right] \in \mathbb{R}^{m n \times 1}
$$

Tensors

- Are n-D arrays of numbers
- Can have $n=0$ (scalar), $n=1$ (vector), $n=2$ (matrix), or $n>2$

For tensors, rank/order refers to the number of dimensions (NOT the same meaning as for matrices)

Matrix Transpose

- "Flipping" the rows and columns of a matrix (across main diagonal)

$$
\begin{gathered}
\mathbf{A}=\left[\begin{array}{ccc}
-a_{11} \ldots a_{12} & a_{13} \\
a_{21} & \cdots & a_{22} \cdots a_{23}
\end{array}\right] \in \mathbb{R}^{2 \times 3} \quad \mathbf{A}^{\top}=\left[\begin{array}{ll}
a_{11} & a_{21} \\
a_{12} & a_{22} \\
a_{13} & a_{23}
\end{array}\right] \in \mathbb{R}^{3 \times 2} \\
\mathbf{A}_{i j}=\left(\mathbf{A}^{\top}\right)_{j i}
\end{gathered}
$$

- Some important properties:

$$
\left(\mathbf{A}^{\top}\right)^{\top}=\mathbf{A} \quad(\mathbf{A B})^{\top}=\mathbf{B}^{\top} \mathbf{A}^{\top} \quad(\mathbf{A}+\mathbf{B})^{\top}=\mathbf{A}^{\top}+\mathbf{B}^{\top}
$$

- Symmetric matrices:

$$
\mathbf{A}^{\top}=\mathbf{A} \in \mathbb{R}^{n \times n}
$$

Inner/Dot Product (1)

- Between vectors

$$
\mathbf{x} \cdot \mathbf{y}=\sum_{i=1}^{n} x_{i} y_{i}=\mathbf{x}^{\top} \mathbf{y}=\mathbf{y}^{\top} \mathbf{x}
$$

- Between matrices $\mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{B} \in \mathbb{R}^{n \times p}$

$$
\begin{aligned}
& \mathbf{C}=\mathbf{A B} \\
& c_{i j}=\sum_{k} a_{i k} b_{k j}
\end{aligned}
$$

Inner/Dot Product (2)

- Angle between two vectors:

Outer Product

- Between two vectors: $\mathbf{x y}^{\top}$
- Can have different dimensions $\mathbf{x} \in \mathbb{R}^{m}, \mathbf{y} \in \mathbb{R}^{n}$

Linear Transformations

- Linear transformation
$f: \mathcal{X} \rightarrow \mathcal{Y}$ such that $f(\mathbf{x}+\mathbf{y})=f(\mathbf{x})+f(\mathbf{y})$ and $f(a \mathbf{x})=a f(\mathbf{x})$ for all $\mathbf{x}, \mathbf{y} \in \mathcal{X}$

$$
\begin{gathered}
f\left(a_{1} x_{1}+\cdots+a_{n}^{\operatorname{Linea}_{n}} x_{n}\right) \\
\text { combo }
\end{gathered}={\underset{\text { Distributes }}{a_{1}} f\left(x_{1}\right)+\cdots a_{n} f\left(x_{n}\right)}_{a_{n}}
$$

- Example: expectation operator \mathbb{E}

$$
f_{1}, f_{2} \Rightarrow f_{1}\left(f_{2}(x)\right)=f_{2}\left(f_{1}(x)\right)
$$

Linear Independence

Def. If no vector in a set $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\}$ can be expressed as a linear combination of the others.

$$
\begin{gathered}
\sum_{i}^{n} a_{i} \mathbf{x}_{i}=0 \Longrightarrow a_{1}=a_{2}=\ldots=a_{n}=0 \\
{\left[\begin{array}{ccc}
\mid & \mid & \mid \\
\mathbf{x}_{1} & \mathbf{x}_{2} & \mathbf{x}_{3} \\
\mid & \mid & \mid
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]}
\end{gathered}
$$

Conversely, \mathbf{x}_{n} is linearly dependent on $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n-1}\right\}$ if there exist scalars $\left\{a_{1}, \ldots, a_{n-1}\right\}$ such that:

$$
\mathbf{x}_{n}=\sum_{i}^{n-1} a_{i} \mathbf{x}_{i}
$$

Linear Independence: Examples

$\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 6\end{array}\right] \quad\left[\begin{array}{cc}1 & -3 \\ 1 & 2\end{array}\right]$

Vector Norms (1)

- Interpretation of a vector's "length" $\|\mathbf{x}\| \ll$ Linear?
- Formally $\|\mathbf{x}\|$ is a function $\mathbb{R}^{n} \rightarrow \mathbb{R}$ that must satisfy 4 properties:

1. $\|\mathbf{x}\| \geq 0$ for any $\mathbf{x} \in \mathbb{R}^{n}$ (non-negativity)
2. $\|\mathbf{x}\|=0$ iff $\mathbf{x}=\mathbf{0}$ (definiteness)
3. $\|a \mathbf{x}\|=a\|\mathbf{x}\|, \forall a \in R$ (absolute homogeneity)
4. $\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\|$ (triangle inequality)

Vector Norms (2)

- General family of metrics for $\mathbf{x} \in \mathbb{R}^{n}$ known as L_{p} norm:

$$
\|\mathbf{x}\|_{p}=\left(\left|x_{1}\right|^{p}+\ldots+\left|x_{n}\right|^{p}\right)^{\frac{1}{p}}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}
$$

- Most popular (Euclidean): $\|\mathbf{x}\|_{2}=\sqrt{\sum_{i=1}^{n} x_{i}^{2}}$
- Others common in Machine Learning:

Manhattan: $\|\mathbf{x}\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|$
Max norm: $\|\mathbf{x}\|_{\infty}=\max _{i}\left|x_{i}\right|$
0 -norm: $\|\mathbf{x}\|_{0}=$ count of non-zero x_{i}

Square Matrix Properties

- Trace: $\operatorname{tr}(\mathbf{A})=\sum_{i=1}^{n} a_{i i}$

$$
\left.\begin{array}{c}
\operatorname{tr}(\mathbf{A})=\operatorname{tr}\left(\mathbf{A}^{\boldsymbol{\top}}\right) \\
\operatorname{tr}(\mathbf{A}+\mathbf{B})=\operatorname{tr}(\mathbf{A})+\operatorname{tr}(\mathbf{B}) \\
\operatorname{tr}(c \mathbf{A})=c \operatorname{tr}(\mathbf{A})
\end{array}\right\} ? \quad \begin{aligned}
& \text { Linear } \\
& \text { op. }
\end{aligned}
$$

Cyclic permutation property: $\quad \operatorname{tr}(\mathbf{A B C})=\operatorname{tr}(\mathbf{B C A})=\operatorname{tr}(\mathbf{C A B})$

- Determinant: $\operatorname{det}(\mathbf{A})$ or $|\mathbf{A}|$

$$
|\mathbf{A}|=\left|\mathbf{A}^{\boldsymbol{\top}}\right| \quad|c \mathbf{A}|=c^{n}|\mathbf{A}|
$$

$$
|\mathbf{A}|=0 \text { iff } \mathbf{A} \text { singular, else }\left|\mathbf{A}^{-1}\right|=1 /|\mathbf{A}|
$$

For 2×2 matrix:

$$
\mathbf{A}=\left[\begin{array}{ll}
a_{11} & a a_{12} \\
a_{21}<a_{22}
\end{array}\right] \quad|\mathbf{A}|=a_{11} a_{22}-a_{12} a_{21}
$$

Trace Trick

- Trace trick to rewrite scalar dot product: $\mathbf{x}^{\top} \mathbf{A x}$

Matrix Rank

- Dimension of the column space of $\mathbf{A} \Longrightarrow$ no. of linearly independent cols.
- Column rank same as row rank: $\operatorname{rank}(\mathbf{A})=\operatorname{rank}\left(\mathbf{A}^{\boldsymbol{\top}}\right)$
- For $\mathbf{A} \in \mathbb{R}^{m \times n}: \operatorname{rank}(\mathbf{A}) \leq \min (m, n)$
- Full $\operatorname{rank}(\mathbf{A})=\min (m, n)$ else rank deficient

$$
\operatorname{rank}\left(\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & 4 & 6
\end{array}\right]\right)=1 \quad \operatorname{rank}\left(\left[\begin{array}{cc}
1 & -3 \\
1 & 2
\end{array}\right]\right)=2
$$

Special Matrices

- Diagonal (0 elsewhere)

$$
\operatorname{diag}\left(a_{1}, a_{2} \ldots, a_{n}\right)=\left[\begin{array}{cccc}
a_{1} & & & \\
& a_{2} & & \\
& & \ddots & \\
& & & a_{n}
\end{array}\right] \in \mathbb{R}^{n \times n}
$$

- Identity, \mathbf{I}, is a diagonal with $1 \mathrm{~s} \quad \mathbf{I}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] \in \mathbb{R}^{3 \times 3}$

$$
\forall \mathbf{x} \in \mathbb{R}^{n}, \mathbf{I} \mathbf{x}=\mathbf{x} \quad \forall \mathbf{A} \in \mathbb{R}^{n \times n}, \mathbf{A I}=\mathbf{I} \mathbf{A}=\mathbf{A}
$$

- Orthogonality

Vectors

$$
\mathbf{x} \perp \mathbf{y} \Longleftrightarrow \mathbf{x}^{\top} \mathbf{y}=0
$$

Matrices

$$
\begin{gathered}
\mathbf{A}^{\top} \mathbf{A}=\mathbf{I}=\mathbf{A}^{\top}{ }^{\top} \\
\mathbf{A}^{\top}=\mathbf{A}^{-1}
\end{gathered}
$$

Set of orthogonal (column) vectors are linearly independent

Matrix Inversion

- Inverse of a square matrix, $\mathbf{A} \in \mathbb{R}^{n \times n}$, is \mathbf{A}^{-1} such that: $\quad \mathbf{A A}^{-1}=\mathbf{I}$
- Exists iff $|\mathbf{A}| \neq 0$ (full rank), else referred to as a singular matrix
- Properties: $\quad\left(\mathbf{A}^{-1}\right)^{-1}=\mathbf{A} \quad(a \mathbf{A})^{-1}=\frac{1}{a} \mathbf{A}^{-1} \quad\left(\mathbf{A}^{\top}\right)^{-1}=\left(\mathbf{A}^{-1}\right)^{\top}$
- For a 2×2 matrix:

$$
\mathbf{A}=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \quad \mathbf{A}^{-1}=\frac{1}{|\mathbf{A}|}\left[\begin{array}{cc}
a_{22} & -a_{12} \\
-a_{21} & a_{11}
\end{array}\right]
$$

System of Linear Equations

$$
\begin{array}{r}
3 x_{1}+8 x_{2}=5 \\
4 x_{1}+11 x_{2}=7
\end{array}
$$

- Matrix representation

$$
\mathbf{A x}=\mathbf{b}
$$

$$
\mathbf{A}=\left[\begin{array}{cc}
3 & 8 \\
4 & 11
\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{l}
5 \\
7
\end{array}\right]
$$

- If \mathbf{A}^{-1} exists

$$
\mathbf{x}=\mathbf{A}^{-1} \mathbf{b}
$$

Eigenvalue Decomposition (EVD) - Intro

- For $\mathbf{A} \in \mathbb{R}^{n \times n}$, an eigenvector $\mathbf{u} \in \mathbb{R}^{n}$ is a non-zero vector with an associated number, called an eigenvalue $\lambda \in \mathbb{R}$, such that:

$$
\mathbf{A} \mathbf{u}=\lambda \mathbf{u}
$$

- (λ, \mathbf{u}) may be complex-valued, but real-valued for symmetric $\mathbf{A}=\mathbf{A}^{\top}$
- Properties: $\operatorname{tr}(\mathbf{A})=\sum_{i=1}^{n} \lambda_{i} \quad \operatorname{det}(\mathbf{A})=\prod_{i=1}^{n} \lambda_{i}$

Eigenvalue Decomposition (EVD) - Matrix Form

- For $\mathbf{A} \in \mathbb{R}^{n \times n}$, there are $n \times(\lambda, \mathbf{u})$ pairs, which can be written as:

$$
\mathbf{A U}=\mathbf{U} \boldsymbol{\Lambda}_{\longleftarrow} \longleftarrow \Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)
$$

- If \mathbf{U}^{-1} exists, then \mathbf{A} is "diagonalizable" so the EVD is:

$$
S_{\text {pectral decomposition } \longrightarrow \mathbf{A}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{-1}=U \wedge U^{\top} \text { if } A=A^{\top} .}
$$

Singular Value Decomposition (SVD)

- More general case of rectangular matrices, $\mathbf{A} \in \mathbb{R}^{m \times n}$
- SVD of A:

$$
\begin{array}{cc}
\mathbf{A}=\text { USN }^{\top} & \text { Orthogonal } U \& V \\
m \times m_{n \times n} \sum_{n \times n} & U^{\top} U=I, V^{\top} V=I
\end{array}
$$

Coding Break

Quadratic Forms \& Positive Definiteness

- Given $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $\mathbf{x} \in \mathbb{R}^{n}$, a quadratic form is the scalar:

$$
\mathbf{x}^{\top} \mathbf{A} \mathbf{x}=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} x_{i} x_{j}
$$

- Can assume \mathbf{A} is symmetric and:
- Positive definite ($P D$) iff $\mathbf{x}^{\top} \mathbf{A} \mathbf{x}>0, \forall \mathbf{x} \in \mathbb{R}^{n} \backslash\{\mathbf{0}\}$, denoted $\mathbf{A}>0$
- Positive semidefinite (PSD) iff $\mathbf{x}^{\top} \mathbf{A} \mathbf{x} \geq 0, \forall \mathbf{x} \in \mathbb{R}^{n}$, denoted $\mathbf{A} \geq 0$
- Negative definite (ND) iff $\mathbf{x}^{\top} \mathbf{A} \mathbf{x}<0, \forall \mathbf{x} \in \mathbb{R}^{n} \backslash\{\mathbf{0}\}$, denoted $\mathbf{A}<0$
- Negative semidefinite (NSD) iff $\mathbf{x}^{\top} \mathbf{A} \mathbf{x} \leq 0, \forall \mathbf{x} \in \mathbb{R}^{n}$, denoted $\mathbf{A} \leq 0$

Significance of Positive Definiteness

Zero gradient, and Hessian with...

All positive eigenvalues All negative eigenvalues

Matrix Calculus

- Gradient of $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ at \mathbf{x} is the vector of its partial derivatives:

$$
\frac{\delta f}{\delta \mathbf{x}}=\nabla_{\mathbf{x}} f=\left[\begin{array}{c}
\frac{\delta f}{\delta x_{1}} \\
\frac{\delta f}{\delta x_{2}} \\
\vdots \\
\frac{\delta f}{\delta x_{n}}
\end{array}\right] \in \mathbb{R}^{n}
$$

- Corresponding $2^{\text {nd }}$ order derivatives are the symmetric Hessian matrix:

$$
\frac{\delta^{2} f}{\delta \mathbf{x}^{2}}=\nabla_{\mathbf{x}}^{2} f=\left[\begin{array}{ccc}
\frac{\delta^{2} f}{\delta x_{1}^{2}} & \cdots & \frac{\delta^{2} f}{\delta x_{1} \delta x_{n}} \\
\vdots & \ddots & \vdots \\
\frac{\delta^{2} f}{\delta x_{n} \delta x_{1}} & \cdots & \frac{\delta^{2} f}{\delta x_{n}^{2}}
\end{array}\right] \in \mathbb{R}^{n \times n}
$$

Summary

	Non-singular	Singular
\mathbf{A} is	invertible	not invertible
Columns	independent	dependent
Rows	independent	dependent
$\operatorname{det}(\mathbf{A})$	$\neq 0$	$=0$
$\mathbf{A}=\mathbf{0}$	one solution $\mathbf{x}=\mathbf{0}$	infinitely many solution
$\mathbf{A} \mathbf{x}=\mathbf{b}$	one solution	no solution or infinitely many
\mathbf{A} has	n (nonzero) pivots	$r<n$ pivots
\mathbf{A} has	full rank $r=n$	rank $r<n$
Column space	is all of \mathbb{R}^{n}	has dimension $r<n$
Row space	is all of \mathbb{R}^{n}	has dimension $r<n$
Eigenvalue	All eigenvalues are non-zero	Zero is an eigenvalue of \mathbf{A}
$\mathbf{A}^{\top} \mathbf{A}$	is symmetric positive definite	is only semidefinite
Singular value of \mathbf{A}	has n (positive) singular values	has $r<n$ singular values

Resources

Linear Algebra

https://cs229.stanford.edu/section/cs229-linalg.pdf
https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf

Concluding Remarks

- Notation can appear scary but will get easier with practice
- Look at "eig_svd.ipynb" file for NumPy example of EVD \& SVD:
https://github.com/mazrk7/EECE5644 IntroMLPR LectureCode/blob/main/no tebooks/foundations/eig svd.ipynb
- Questions?

