EECE 5644: Unsupervised Clustering

Mark Zolotas

E-mail: <u>m.zolotas@northeastern.edu</u> Webpage: <u>https://coe.northeastern.edu/people/zolotas-mark/</u>

Tentative Course Outline (Wks. 5-6*)

Topics	Dates	Assignments	Additional Reading
Neural Networks: Multilayer Perceptrons & Backpropagation	08/01-03	Homework 3 released on Canvas on 08/01 Due 08/10	Chpts. 13.1-13.5 Murphy 2022
HW1 Review	08/02		N/A
Clustering: K-means, Gaussian Mixture Models (GMMs)	08/04		Chpt. 21 Murphy 2022
Support Vector Machine (SVM)	08/08	Homework 4 released on Canvas on 08/08 Due 08/17	Burges Tutorial
Reinforcement Learning	08/09		N/A

Types of Machine Learning

- **Supervised Learning:** Train or "teach" an algorithm using input-output pairs (labelled/categorized data)
 - Classification
 - Regression
- Unsupervised Learning: No feedback, "make sense" of structure in the data (*knowledge discovery*)
 - * Clustering
 - Dimensionality Reduction (e.g., PCA)
 - Feature Learning (e.g., Autoencoders)
- **Reinforcement Learning:** Equip intelligent agents with reward-maximizing decision-making (action-taking)

Unsupervised Learning

No need to collect large labeled datasets (timeconsuming and expensive)

Avoid categorizing data, e.g. ambiguous situations like labeling an action – **better for ill-defined tasks** "Explain" highdimensional inputs (data), rather than just low-dimensional outputs • **Goal:** Automatically group data into coherent subsets or regions (**clusters**) of "similar" points

• No "correct" number of clusters (*K*): can be anything from $1 \rightarrow N$

Summer 2022

Clustering – When & Why?

Sources: <u>Smartera3s</u> (customer segmentation), <u>Wolfram</u> (social network), <u>Wikipedia</u> (gene clustering), <u>Max Planck Institute</u> (astronomical data analysis)

Summer 2022

CLUSTERING

Clustering Algorithm Categories

- Hierarchical
 - Connect objects according to a dissimilarity matrix in a tree structure
 - Used typically in biogenetics, e.g., dissect plant/insect down to gene granularity
- Centroid-based, e.g., K-means
 - * Objective-oriented where each cluster is represented by a **centroid**
 - * Assign objects to nearest cluster center, e.g., via Euclidean distance
- Distribution-based, e.g., GMM clustering
 - Clusters defined based on likelihood of belonging to a distribution
 - * E.g., assign objects to Gaussian most likely to belong to
- Other types: mean-shift (KDE), spectral (eigenvalue \rightarrow pairwise similarity)

In all cases attempting to assign "similar" points to the same cluster

7

• Assume fixed *K* no. of clusters with cluster centroids μ_k for $k \in \{1, ..., K\}$

• Given
$$D = \{\mathbf{x}^{(i)}\}_{i=1}^{N}$$
 with $\mathbf{x} \in \mathbb{R}^{n}$ but **no labels** $y^{(i)}$ available

- Similarity? Computed in terms of a distance measure, most commonly Euclidean
- Two steps:
 - 1. Cluster assignment
 - 2. Move centroid (mean update)

Randomly initialize K distinct cluster centroids $\mu_1, \mu_2, \ldots, \mu_K \in \mathbb{R}^n$

Repeat until convergence (values no longer changing) {

1. Cluster assignment: for every i

$$c^{(i)} = \operatorname*{arg\,min}_{k} ||\mathbf{x}^{(i)} - \boldsymbol{\mu}_{k}||_{2}^{2}$$

2. Mean update: for every k

$$\boldsymbol{\mu}_k = \frac{1}{N_k} \sum_{i:c^{(i)}=k} \mathbf{x}^{(i)}$$

K-means Clustering – Illustration

• The two update steps in the K-means algorithm are in fact finding the **local minimum** for the following **distortion** objective function:

$$\mathcal{J}(c^{(1)},\ldots,c^{(N)},\boldsymbol{\mu}_1,\ldots,\boldsymbol{\mu}_K) = \mathcal{J}(c,\boldsymbol{\mu}) = \sum_{i=1}^N ||\mathbf{x}^{(i)} - \boldsymbol{\mu}_{c^{(i)}}||_2^2,$$

- Measures the sum of squared distances between each example x⁽ⁱ⁾ and centroid µ_{c⁽ⁱ⁾} to which it has been assigned
- Non-convex objective so K-means may suffer from bad local minima
- Discussion of other properties/limitations provided in <u>Notebook</u>...

Coding Break

GMM Clustering – Setting

• Similarity now in terms of **likelihood**

- Two steps:
 - 1. Fit the model, e.g. by computing the MLE of the parameters
 - 2. Then associate each sample $\mathbf{x}^{(i)}$ with a discrete variable $z^{(i)}$ (cluster label)

Given data $\mathcal{D} = {\mathbf{x}^{(i)}}_{i=1}^{N}$

1. Fit a GMM $p(\mathcal{D} | \boldsymbol{\theta})$, e.g. using **Expectation Maximization (EM)**

$$\arg\max\log p(\mathcal{D} \mid \boldsymbol{\theta}) = \arg\max\log\left(\sum_{k=1}^{K} a_k p_k(\mathbf{x})\right)$$
$$= \arg\max\log\left(\sum_{k=1}^{K} p(z=k \mid \boldsymbol{\theta}) p(\mathbf{x} \mid z=k, \boldsymbol{\theta})\right)$$

2. Can then perform MAP clustering for each $\mathbf{x}^{(i)}$ as:

$$\arg\max_{k} \left[\log p(\mathbf{x}^{(i)} \mid z^{(i)} = k, \boldsymbol{\theta}) + \log p(z^{(i)} = k \mid \boldsymbol{\theta}) \right].$$

GMM Clustering – Illustration

K-means & GMM Clustering Overlaps

• K-means clustering is a special case of the EM algorithm for GMMs

- Two simplifications:
 - 1. All covariance matrices are assumed fixed $\Sigma_k = \sigma^2 \mathbf{I}$
 - 2. The spherical Gaussian clusters all have equal prior probability $a_k = \frac{1}{\kappa}$

 Both assume K is provided beforehand... Kernel Density Estimation (KDE) based clustering approaches circumvent this requirement

Concluding Remarks

- **Clustering** is a powerful unsupervised learning technique with a diverse array of applications, understandably so given the benefits of algorithms that operate without the requirement for labeled data
- Code:

<u>https://github.com/mazrk7/EECE5644_IntroMLPR_LectureCode/blob/main/not</u> <u>ebooks/unsupervised_learning/gmm_fitting_clustering.ipynb</u>

https://github.com/mazrk7/EECE5644_IntroMLPR_LectureCode/blob/main/not ebooks/unsupervised_learning/k_means_clustering.ipynb

<u>https://github.com/mazrk7/EECE5644_IntroMLPR_LectureCode/blob/main/not</u> <u>ebooks/unsupervised_learning/k_means_image_segmentation.ipynb</u>