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Tentative Course Outline (Wks. 5-6*)

(CNNs & RNNSs)

: Additional
Dates Assignments )
Reading
Neural Networks: Multilayer 08/01-03 Chpts. 13.1-13.5
Perceptrons & Backpropagation Murphy 2022
Homework 3 released on
HW1 Review 08/02 Canvas on 08/01 N/A
Due 08/10
Support Vector Machines (SVMs) 08/04 Burges Tutorial
Clustering: K-means, Gaussian
Mixture Models (GMMs) Jelitte Homework 4 released on et 211 WL 1y AL
Canvas on 08/08
More on Deep Learning 08/09 Due 08/17 Deep Learning

Goodfellow et al. 2016
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Tentative Course Outline (Wks. 6*-8)

: Additional
Assignments )
Reading
Project + Practical Tips 08/10 _ N/A
Project teams (2-3 ppl.
Ensemble Methods: Decision Trees, 08/11 strict) are fully formed by Chpt. 18
Boosting & Bagging 08/12 Murphy 2022
Model Predictive Control (MPC) | 08/15-16 Final Project TBD
_ Reports & Code
Gausslan Processes 08/17 Due 08/22 TBD
Representation Learning 08/18 | Presentations on 08/22-23 Chpt. 20
(Autoencoders) ) Murphy 2022
In normal lecture hours
and office hours depending
Project Presentations 08/22-23 on no. of groups N/A
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History of NNs

Deep Neural Network
(Pretraining)
Multi-layered A
XOR Perceptron A
ADALINE (Backpropagation)
A A y
Perceptron
L Golden Age ! Dark Age ("Al Winter") .
Electronic Brain

1950 1960 1970 1980 1990 2000

S. McCulloch - W. Pitts D. Rumelhart - G. Hinton - R. Wiliams V. Vapnik - C. Cortes G. Hinton - S. Ruslan
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— FOWRIT ACALY el ‘

A} @ Backward Error
* Adjustable Weights * Learnable Weights and Threshold * XOR Problem + Solution to nonlinearly separable problems + Limitations of leaming prior knowledge * Hierarchical feature Leaming
« Weights are not Leamed + Big computation, local optima and overfitting * Kernel function: Human Intervention
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In Summary

° 15t generation NNs: Perceptron 1957 — 1969
<« Only useful for linearly separable examples

* 2" generation NNs: Feedforward networks and variants (convolutional,
recurrent), beginning of 1980s to middle 1990s... difficult to train

» Wrong activation functions

Subpar weight initialization

Too many parameters to train when computers were slower
Datasets were too small

/ /
000 000 L)

/
0‘0

* 3rd generation NNs: Deep networks 2006-?
< Newer approaches to train networks with multiple layers
< Reap the rewards of flexible function approximators...
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Flexible Function Approximators

Machine Learning

o i -2 Il Y

Input Feature extraction Classification Output T l1 I
Deep Learning
(%)
oo - B
O
Input Feature extraction + Classification Output
X, X2

Remember the idea of increasing model flexibility through feature transfor-
mation, i.e. replace x with ¢(x)?
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Automatic Feature Extraction

Example basis function expansion in polynomial regression:

f(x:0) = Wo(x) + b 6=)\W b
Wesjk]} Brag
Handcrafting transformations is limiting; parameterize the feature extractor:
f(x;0) = Wo(x;0%)) + b
Repeat recursively to create increasingly more complex function hierarchies:

b F(x:8) = fB (FED (. (FD(x))---))

Composition of L functions, where f()(x) = f(x;0W) is the function at layer [.
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Feedforward Neural Networks

The following slides are taken and adapted from Hugo Larochelle’s course:

https://info.usherbrooke.ca/hlarochelle/neural _networks/content.html
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Artificial Neuron (1)

Topics: connection weights, bias, activation function
- Neuron pre-activation (or input activation):

a(x) :b+ij:L‘j =b+wTx
J

- Neuron (output) activation
h(x) = g(a(x)) = g(b+ wTx)

w are the connection weights
b is the neuron bias
g(.) 1s called the activation function
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Artificial Neuron (2)

Range determined
by 9()

Bias b only

changes the
position of
the ridge
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Activation Functions — Linear

3.0

inear activation functio S —

» Performs no input squashing o ]

* Not very interesting. .. B A S
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Activation Functions — Sigmoid/Logistic

Sigmoid activation function

* Squashes the neuron’s pre- i T N N
activation between 0 and 1

 Always positive ;0'-5: """"""""""" e e

e Bounded N ,,,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,,

 Strictly increasing
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Activation Functions — tanh

Hyperbolic tangent (tanh) ]
activation function I, P -

* Squashes the neuron’s pre-
activation between -1 and 1

* Positive or negative 5
. Bounded B s s s s B
 Strictly increasing
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Activation Functions — ReLU

Rectified linear activation
function (ReLU)

Bounded below by 0 (always
non-negative)

Not upper bounded
Strictly increasing

Tends to give neurons with
sparse activities
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Linear Capacity of an Artificial Neuron

Topics: capacity, decision boundary of neuron
« Could do binary classification:

- With sigmoid, interpret neuron as estimating p(y = 1|x)
decision boundary is linear

- Aka logistic regression T X
- 1f greater than 0.5, predict
class 1
~ otherwise, predict class 0 \ R,
\
Similar idea can be applied @ R,
with tanh X %
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Artificial Neuron for Basic Logic Gates

Topics: capacity of a single neuron

« Can solve linearly separable problems

OR (Ilj.’jﬂg) AAND (flﬂ'_lj, ffg)

A
/
] ~ A A | A - O
™ N (| 4
= \ & /
of o _ A o], ” o 0
'—\)—)
0 | 0 |
I1 |
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Artificial Neuron NOT for Non-linear Problems

Topics: capacity of a single neuron

 CAN’T solve non-linear separable problems

XOR (fﬂljfﬂg) XOR (.“171,&,"2)
A
| A O
S ?
0 (0 A
—————
0 I 0 I
3 AND (77, )

. ...unless the input is transformed Into a better representation
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Representation Matters

Cartesian coordinates Polar coordinates

Goodfellow et al., “Deep Learning”, 2016
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Neural Network — Single Layer

Topics: single-layer neural network (NN)

« Hidden layer pre-activation:
a(x) =b) + wWlbx

a(x); = b+ W,
J

- Hidden layer activation: &

h(x) = g(a(x))

. Output layer activation: @ @ @
F(x) :@5(2) + W(Q)Th(l)(x))

No_/' 8
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Neural Network — Softmax Activation

Topics: softmax activation function

« For multi-class classification:
* need multiple outputs (one per class)

« wish to estimate conditional probability p(y = ¢ |x)

« Use softmax activation at the output:

el edc

- strictly positive S(a) 2 ’ _ (
1ttty E—g
>~ Sums to one 2521 ecte’ Zf::l efe! q)

...Predicted class 1s one with highest estimated probability
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Neural Network — Multilayer Neural Network M LP

N NN

Topics: multilayer NN
« Could have L hidden layers
 Layer pre-activation for [ > 0:

o (x) = b 4 WO Ry

O (x) = g(a' (x))

 Output layer activation (I = L + 1):
REFD (x) = o(a TV (x)) = f(x)
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Capacity of a Single Layer NN (1)
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Capacity of a Single Layer NN (2)
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Universal Approximation Theorem

Topics: universal approximators

* “Asingle hidden layer NN with a linear output unit can approximate any

continuous function arbitrarily well, given enough hidden units” (Hornik,
1991)

* Result applies to many other hidden layer activation functions, e.g.,
sigmoid, tanh, etc.

« A good result but there Is no guarantee that a learning algorithm exists to
derive the parameters for this arbitrarily complex function approximator
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Coding Break
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Parallel with Visual Cortex (1)

Summer 2022

Simple visual forms
edges, corners

To spinal cord
_——160-220 ms

[picture from Simon Thorpe]
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Parallel with Visual Cortex (2)
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] |
Simple visual forms
edges, corners

To spinal cord
er muscle ———160-220 ms
B0-260 ms

[picture from Simon Thorpe]
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Parallel with Visual Cortex (3)
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Simple visual forms

To spinal cord
er muscle - ———160-220 ms
260 ms

[picture from Simon Thorpe]

NEURAL NETWORKS

)




Parallel with Visual Cortex (4)

Categorical judgments,

decision making

| ]
Simple visual forms)

———» To spinal cord
=== lofinger muscle < ———160-220 ms

180-260 ms

[picture from Simon Thorpe]
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Parallel with Visual Cortex (5)

Categorical judgments, — — — REEREEEER
decision making -— - Simple visual forms -/ °
edges, corners

--------
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———» To spinal cord
=== lofinger muscle < ———160-220 ms
180-260 ms

[picture from Simon Thorpe]
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Parallel with Visual Cortex (6)

iviotor commanad
Categorical judgments, ‘ 90 ms o , - —— — REEEEEER
decision making —— N : Simple visual forms |+ ¢/ ° .
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———» To spinal cord
=== lofinger muscle ————160-220 ms
180-260 ms

[picture from Simon Thorpe]
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Parallel with Visual Cortex (7)

iviotor command
-

Simple visual forms Y+ /o
edges, corners I " edges
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[picture from Simon Thorpe]
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Concluding Remarks

* Introduction to artificial neural networks! The most popular computational
system In machine learning nowadays

° Loads of material out there; but get comfortable with PyTorch first
* Quick example code of MLPs with PyTorch:

https://qithub.com/mazrk7/EECE5644 IntroMLPR LectureCode/blob/main/n
otebooks/neural networks/mlp pytorch.ipynb

* Questions?
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https://github.com/mazrk7/EECE5644_IntroMLPR_LectureCode/blob/main/notebooks/neural_networks/mlp_pytorch.ipynb

