EECE 5644: More Neural Networks (NNs)

Mark Zolotas

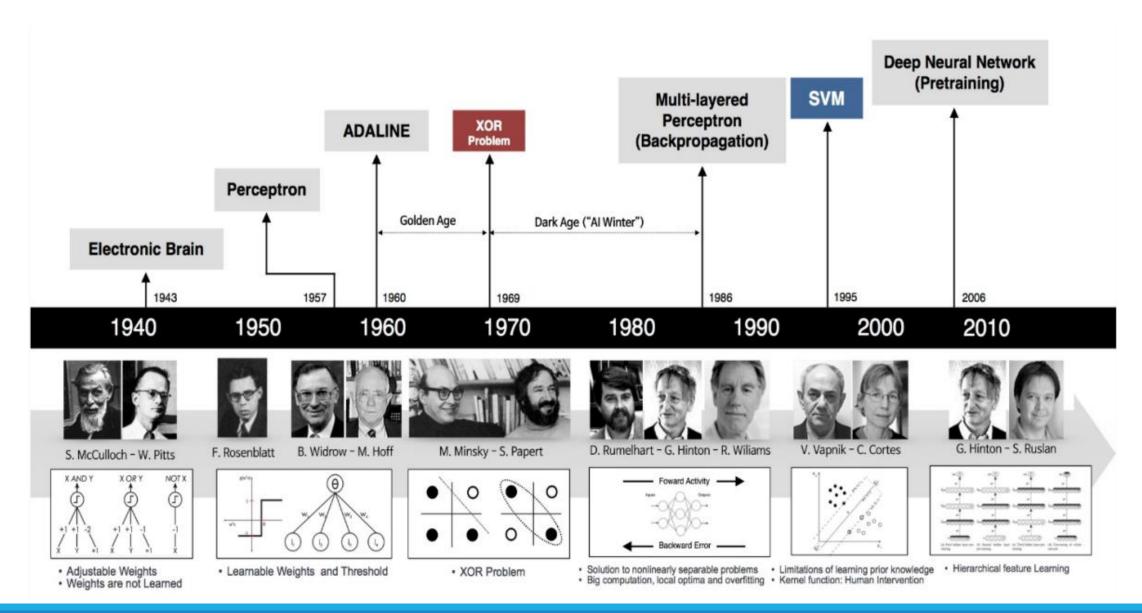
E-mail: <u>m.zolotas@northeastern.edu</u> Webpage: <u>https://coe.northeastern.edu/people/zolotas-mark/</u>

Tentative Course Outline (Wks. 5-6*)

Topics	Dates	Assignments	Additional Reading
Neural Networks: Multilayer Perceptrons & Backpropagation	08/01-03	Homework 3 released on Canvas on 08/01 Due 08/10	Chpts. 13.1-13.5 Murphy 2022
HW1 Review	08/02		N/A
Support Vector Machines (SVMs)	08/04		Burges Tutorial
Clustering: K-means, Gaussian Mixture Models (GMMs)	08/08	Homework 4 released on Canvas on 08/08 Due 08/17	Chpt. 21 Murphy 2022
More on Deep Learning (CNNs & RNNs)	08/09		Deep Learning Goodfellow et al. 2016

Tentative Course Outline (Wks. 6*-8)

Topics	Dates	Assignments	Additional Reading
Project + Practical Tips	08/10	Project teams (2-3 ppl. strict) are fully formed by 08/12	N/A
Ensemble Methods: Decision Trees, Boosting & Bagging	08/11		Chpt. 18 Murphy 2022
Model Predictive Control (MPC)	08/15-16	Final Project Reports & Code Due 08/22 Presentations on 08/22-23 in normal lecture hours and office hours depending on no. of groups	TBD
Gaussian Processes	08/17		TBD
Representation Learning (Autoencoders)	08/18		Chpt. 20 Murphy 2022
Project Presentations	08/22-23		N/A



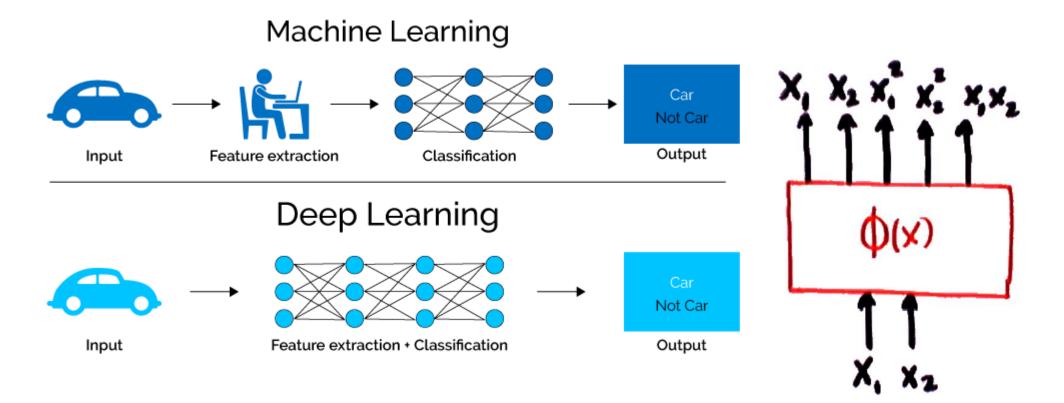
Summer 2022

NEURAL NETWORKS

In Summary

- 1st generation NNs: Perceptron 1957 1969
 - Only useful for linearly separable examples
- 2nd generation NNs: Feedforward networks and variants (convolutional, recurrent), beginning of 1980s to middle 1990s... <u>difficult to train</u>
 - Wrong activation functions
 - Subpar weight initialization
 - Too many parameters to train when computers were slower
 - Datasets were too small
- **3rd generation NNs:** Deep networks 2006-?
 - Newer approaches to train networks with multiple layers
 - Reap the rewards of flexible function approximators...

Flexible Function Approximators



Remember the idea of increasing model flexibility through feature transformation, *i.e.* replace \mathbf{x} with $\phi(\mathbf{x})$? Example **basis function expansion** in polynomial regression:

$$f(\mathbf{x}; \boldsymbol{\theta}) = \mathbf{W}\phi(\mathbf{x}) + \mathbf{b} \qquad \boldsymbol{\Theta} = \left[\mathbf{W} \mathbf{b} \right]$$

$$W_{\text{eights}} \quad \boldsymbol{B}_{\text{ins}}$$

Handcrafting transformations is limiting; parameterize the feature extractor:

$$f(\mathbf{x}; \boldsymbol{\theta}) = \mathbf{W}\phi(\mathbf{x}; \boldsymbol{\theta}^{(2)}) + \mathbf{b}$$

Repeat recursively to create increasingly more complex function hierarchies:

$$f(\mathbf{x}; \boldsymbol{\theta}) = f^{(L)}(f^{(L-1)}(\cdots(f^{(1)}(\mathbf{x}))\cdots))$$

Composition of L functions, where $f^{(l)}(\mathbf{x}) = f(\mathbf{x}; \boldsymbol{\theta}^{(l)})$ is the function at layer l.

Summer 2022

N

Feedforward Neural Networks

The following slides are taken and adapted from **Hugo Larochelle's** course: <u>https://info.usherbrooke.ca/hlarochelle/neural_networks/content.html</u>

Topics: connection weights, bias, activation function

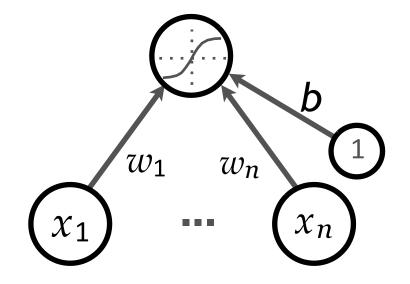
• Neuron **pre-activation** (or input activation):

$$a(\mathbf{x}) = b + \sum_{j}^{n} w_{j} x_{j} = b + \mathbf{w}^{\mathsf{T}} \mathbf{x}$$

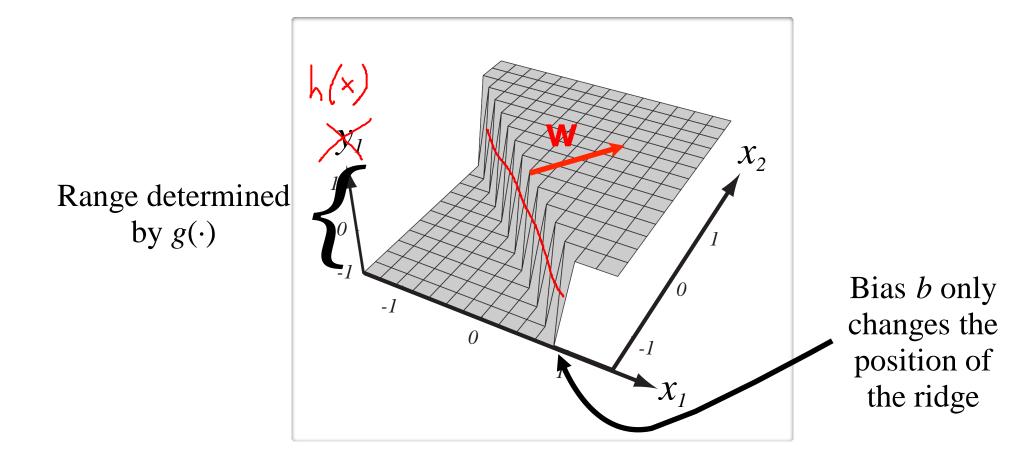
• Neuron (output) activation

$$h(\mathbf{x}) = g(a(\mathbf{x})) = g(b + \mathbf{w}^\mathsf{T}\mathbf{x})$$

- w are the connection weights
- *b* is the neuron **bias**
- g(.) is called the **activation function**

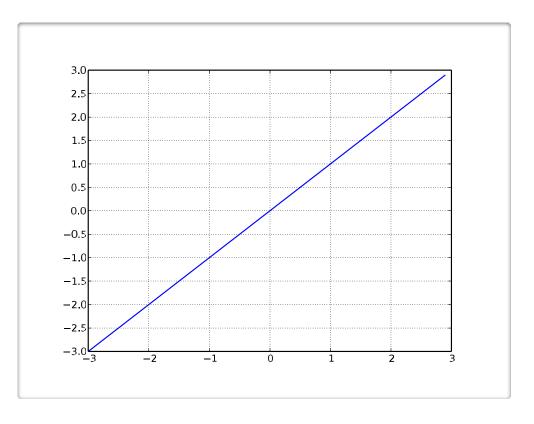


Artificial Neuron (2)



Linear activation function

- Performs no input squashing
- Not very interesting...

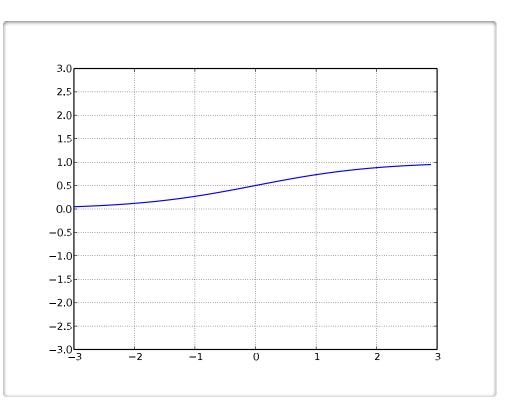


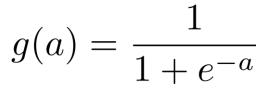
g(a) = a

Activation Functions – Sigmoid/Logistic

Sigmoid activation function

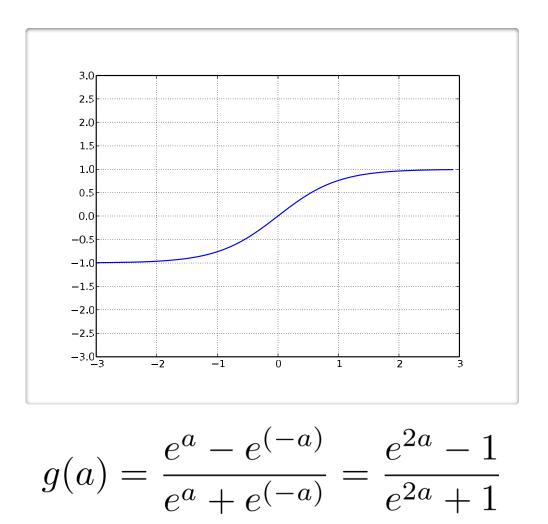
- Squashes the neuron's preactivation between 0 and 1
- Always positive
- Bounded
- Strictly increasing





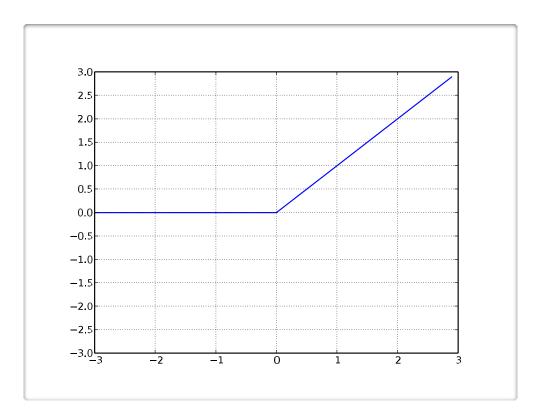
Hyperbolic tangent (**tanh**) activation function

- Squashes the neuron's preactivation between -1 and 1
- Positive or negative
- Bounded
- Strictly increasing



Rectified linear activation function (ReLU)

- Bounded below by 0 (always non-negative)
- Not upper bounded
- Strictly increasing
- Tends to give neurons with sparse activities



 $g(a) = \operatorname{relu}(a) = \max(0, a)$

Linear Capacity of an Artificial Neuron

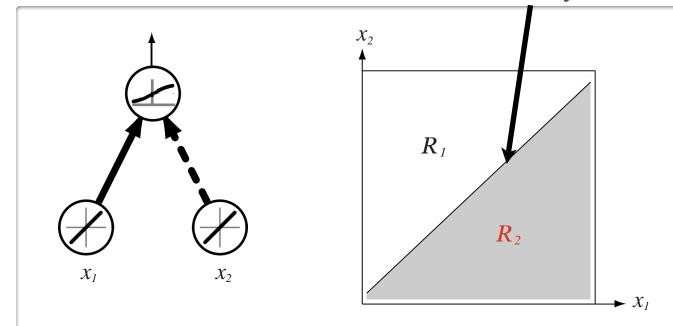
Topics: capacity, decision boundary of neuron

- Could do binary classification:
 - with sigmoid, interpret neuron as estimating $p(y = 1 | \mathbf{x})$

decision boundary is linear

- Aka logistic regression
- if greater than 0.5, predict class 1
- otherwise, predict class 0

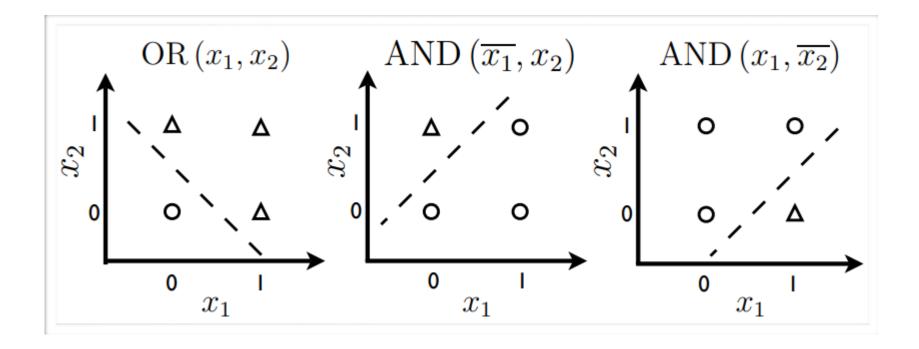
Similar idea can be applied with tanh



Artificial Neuron for Basic Logic Gates

Topics: capacity of a single neuron

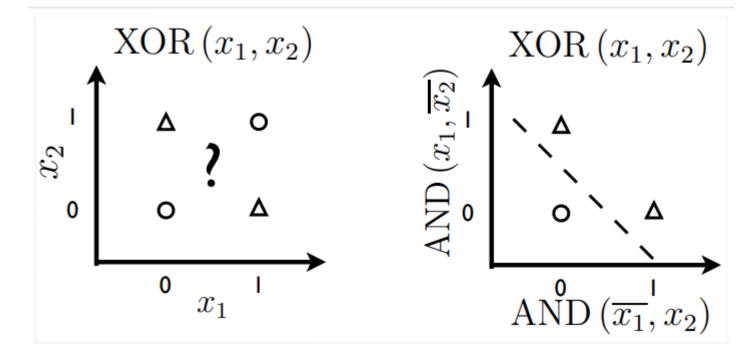
• Can solve linearly separable problems



Artificial Neuron NOT for Non-linear Problems

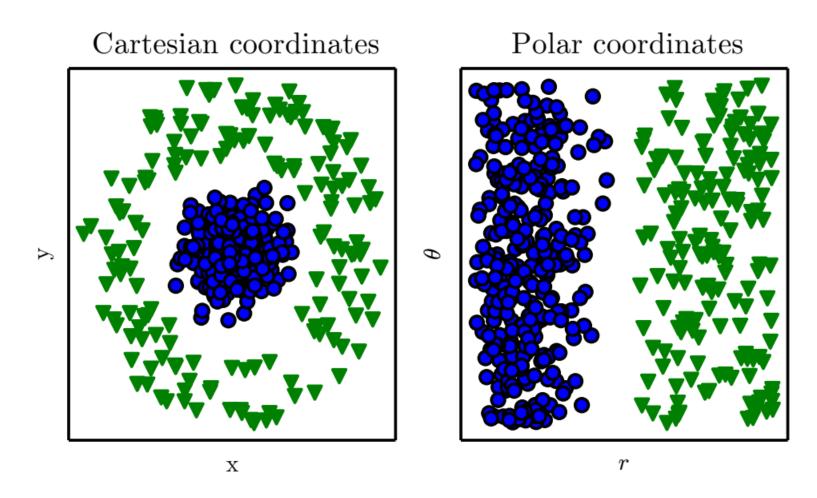
Topics: capacity of a single neuron

• CAN'T solve non-linear separable problems



• ...unless the input is transformed into a better representation

Representation Matters



Goodfellow et al., "Deep Learning", 2016

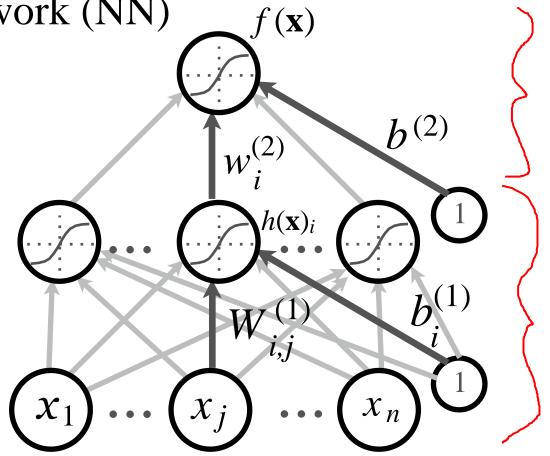
Topics: single-layer neural network (NN)

• Hidden layer pre-activation:

 $a(\mathbf{x}) = \mathbf{b}^{(1)} + \mathbf{W}^{(1)}\mathbf{x}$

- $a(\mathbf{x})_i = b_i^{(1)} + \sum_i W_{i,j}^{(1)} x_j$
- Hidden layer activation:
 - $h(\mathbf{x}) = g(a(\mathbf{x}))$
- Output layer activation:

$$f(\mathbf{x}) = \underbrace{o}_{b^{(2)}} b^{(2)} + \mathbf{w}^{(2)} h^{(1)}(\mathbf{x})$$



Topics: softmax activation function

- For multi-class classification:
 - need multiple outputs (one per class)
 - wish to estimate conditional probability $p(y = c | \mathbf{x})$
- Use **softmax** activation at the output:

• strictly positive
$$S(a) \triangleq \left[\frac{e^{a_1}}{\sum_{c'=1}^C e^{a_{c'}}}, \dots, \frac{e^{a_C}}{\sum_{c'=1}^C e^{a_{c'}}}\right] = O(a)$$

... Predicted class is one with highest estimated probability

Summer 2022

NEURAL NETWORKS

Neural Network – Multilayer Neural Network MLP

Topics: multilayer NN

- Could have *L* hidden layers
- Layer pre-activation for l > 0:

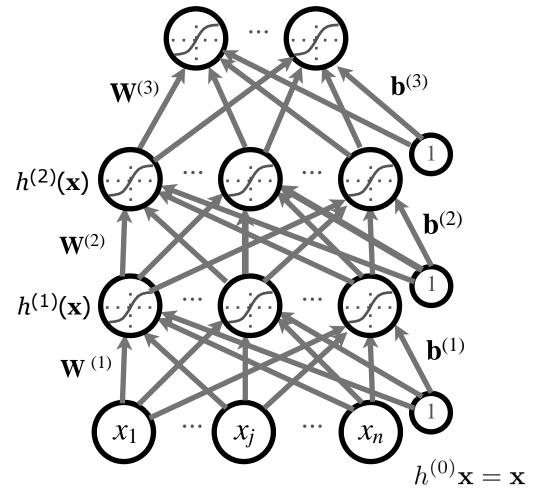
 $a^{(l)}(\mathbf{x}) = \mathbf{b}^{(l)} + \mathbf{W}^{(l)}h^{(l-1)}\mathbf{x}$

• Hidden layer activation (l = 1, ..., L):

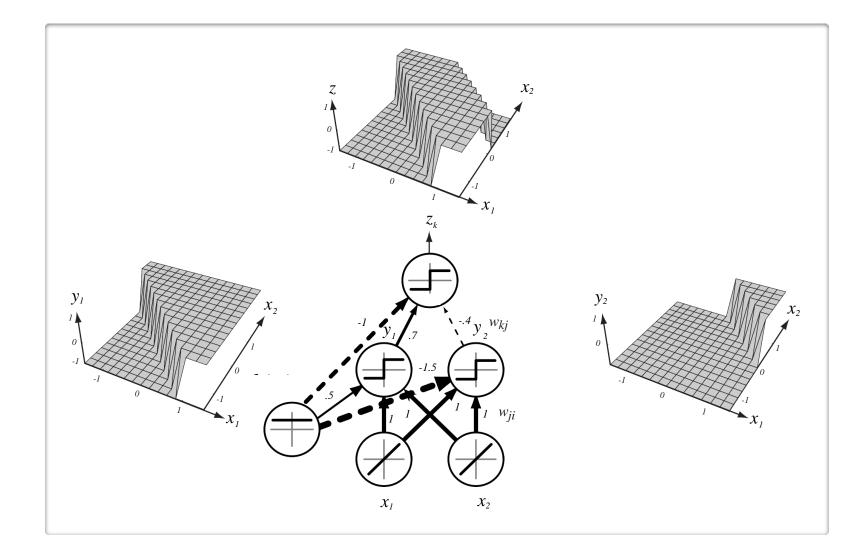
 $h^{(l)}(\mathbf{x}) = g(a^{(l)}(\mathbf{x}))$

• Output layer activation (l = L + 1):

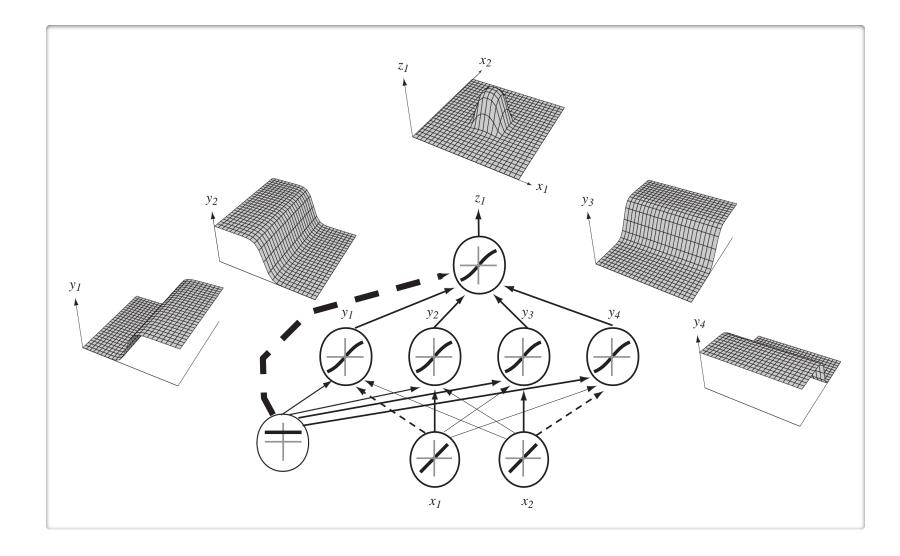
 $h^{(L+1)}(\mathbf{x}) = o(a^{(L+1)}(\mathbf{x})) = f(\mathbf{x})$



Capacity of a Single Layer NN (1)



Capacity of a Single Layer NN (2)

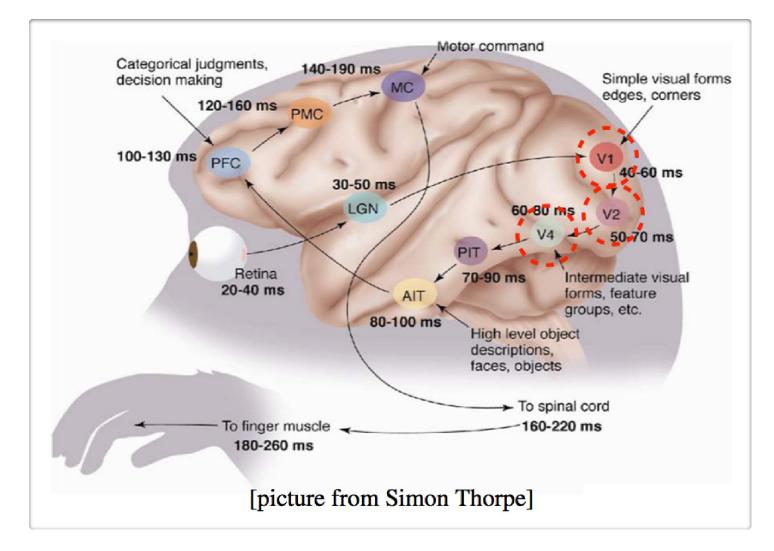


Topics: universal approximators

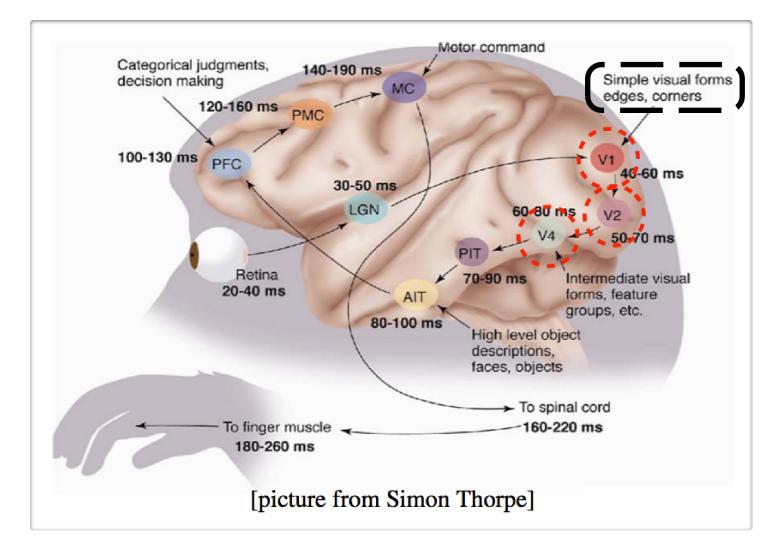
- "A single hidden layer NN with a linear output unit can approximate any continuous function arbitrarily well, given enough hidden units" (Hornik, 1991)
- Result applies to many other hidden layer activation functions, e.g., sigmoid, tanh, etc.
- A good result but there is no guarantee that a learning algorithm exists to derive the parameters for this arbitrarily complex function approximator

Coding Break

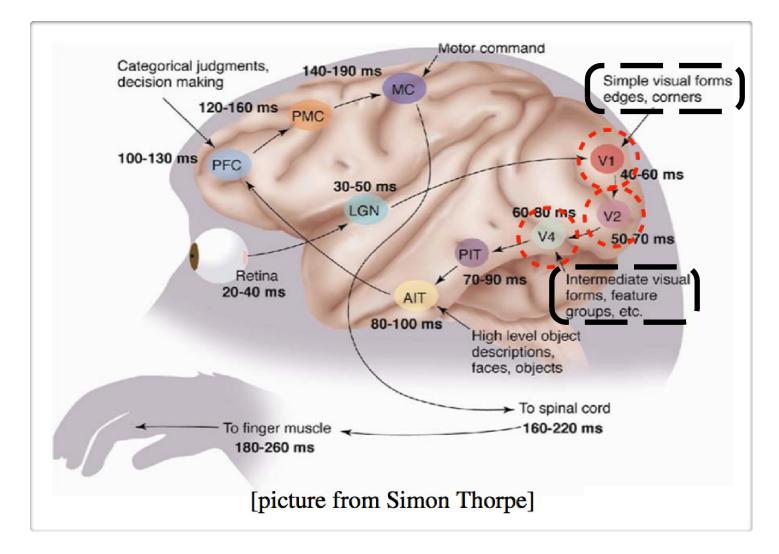
Parallel with Visual Cortex (1)



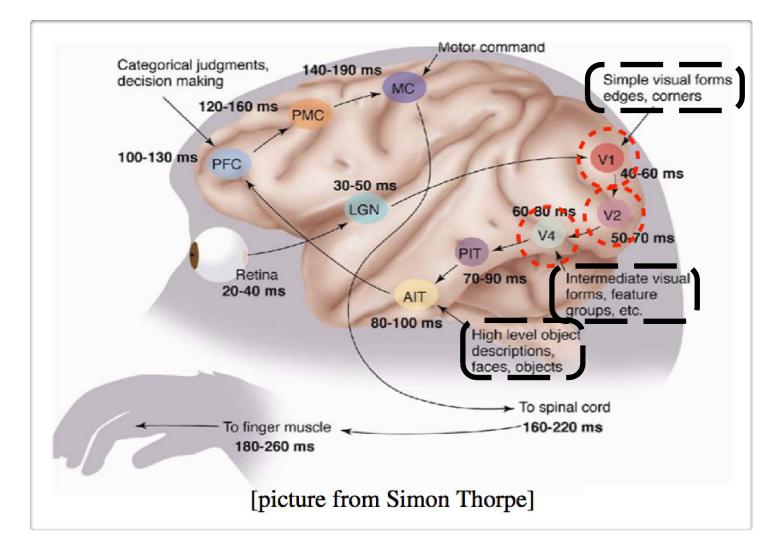
Parallel with Visual Cortex (2)



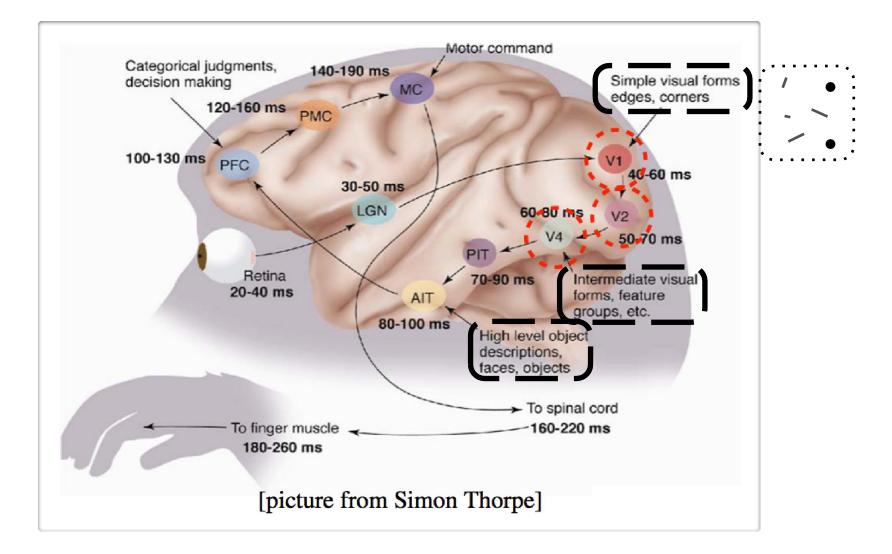
Parallel with Visual Cortex (3)



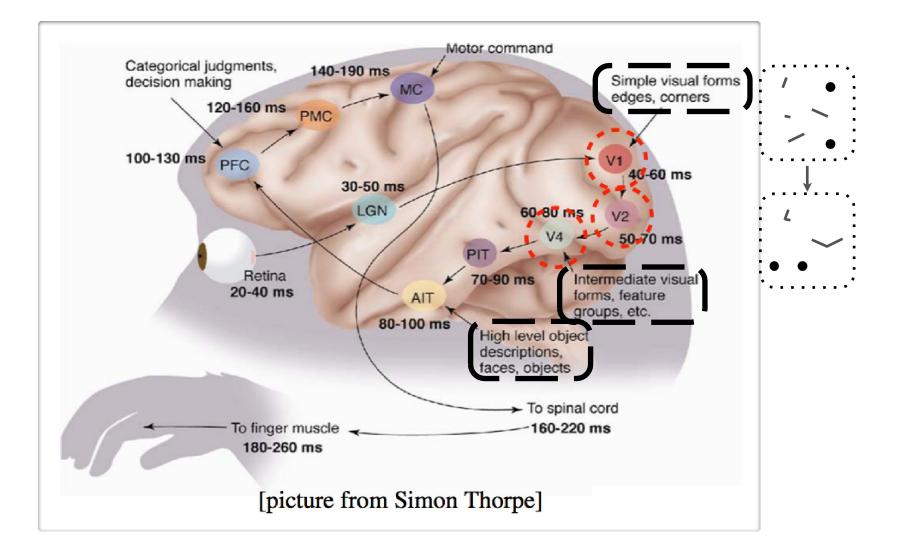
Parallel with Visual Cortex (4)



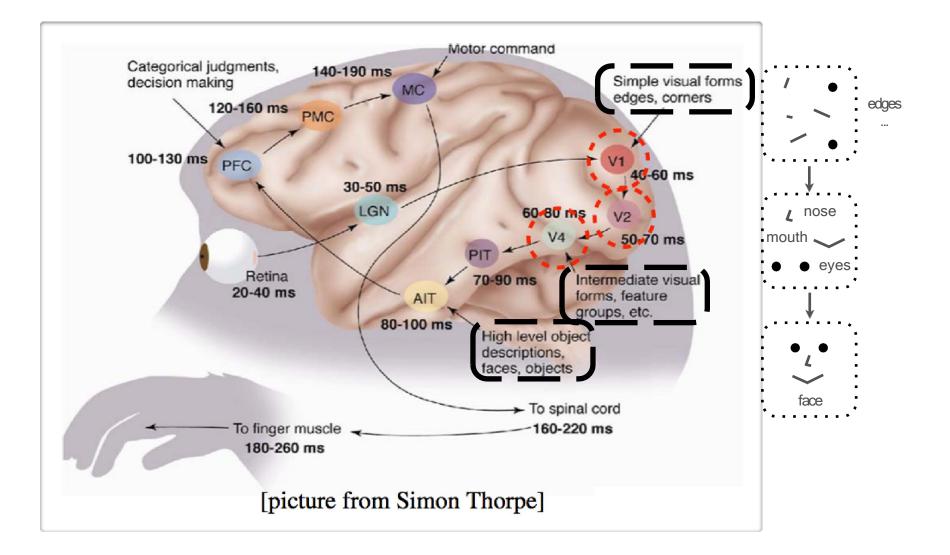
Parallel with Visual Cortex (5)



Parallel with Visual Cortex (6)



Parallel with Visual Cortex (7)



- Introduction to **artificial neural networks**! The most popular computational system in machine learning nowadays
- Loads of material out there; but get comfortable with **PyTorch** first
- Quick example code of MLPs with PyTorch:

https://github.com/mazrk7/EECE5644_IntroMLPR_LectureCode/blob/main/n otebooks/neural_networks/mlp_pytorch.ipynb

• Questions?