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Tentative Course Outline (Wks. 5-6*)
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Topics Dates Assignments
Additional 

Reading

Neural Networks: Multilayer 

Perceptrons & Backpropagation
08/01-03

Homework 3 released on 

Canvas on 08/01

Due 08/10

Chpts. 13.1-13.5

Murphy 2022

N/AHW1 Review 08/02

Support Vector Machines (SVMs) 08/04 Burges Tutorial

Clustering: K-means, Gaussian 

Mixture Models (GMMs)
08/08

Homework 4 released on 

Canvas on 08/08

Due 08/17

Chpt. 21 Murphy 2022

More on Deep Learning 

(CNNs & RNNs)
08/09

Deep Learning 

Goodfellow et al. 2016



Tentative Course Outline (Wks. 6*-8)
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Topics Dates Assignments
Additional 

Reading

Project + Practical Tips 08/10
Project teams (2-3 ppl. 

strict) are fully formed by

08/12

Final Project 

Reports & Code

Due 08/22

Presentations on 08/22-23 

in normal lecture hours 

and office hours depending 

on no. of groups

N/A

Ensemble Methods: Decision Trees, 

Boosting & Bagging
08/11

Chpt. 18

Murphy 2022

Model Predictive Control (MPC) 08/15-16 TBD

Gaussian Processes 08/17 TBD

Representation Learning 

(Autoencoders)
08/18

Chpt. 20

Murphy 2022

Project Presentations 08/22-23 N/A



History of NNs
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In Summary
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• 1st generation NNs: Perceptron 1957 – 1969

❖ Only useful for linearly separable examples

• 2nd generation NNs: Feedforward networks and variants (convolutional, 
recurrent), beginning of 1980s to middle 1990s… difficult to train

❖ Wrong activation functions

❖ Subpar weight initialization

❖ Too many parameters to train when computers were slower

❖ Datasets were too small

• 3rd generation NNs: Deep networks 2006-?

❖ Newer approaches to train networks with multiple layers

❖ Reap the rewards of flexible function approximators…



Flexible Function Approximators
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Automatic Feature Extraction
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Feedforward Neural Networks
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The following slides are taken and adapted from Hugo Larochelle’s course:

https://info.usherbrooke.ca/hlarochelle/neural_networks/content.html

https://info.usherbrooke.ca/hlarochelle/neural_networks/content.html


Artificial Neuron (1) 
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Topics: connection weights, bias, activation function

• Neuron pre-activation (or input activation):

• Neuron (output) activation

• 𝐰 are the connection weights

• 𝑏 is the neuron bias

• 𝑔(. ) is called the activation function



Artificial Neuron (2)
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Activation Functions – Linear 
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Linear activation function

• Performs no input squashing

• Not very interesting…



Activation Functions – Sigmoid/Logistic 
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Sigmoid activation function

• Squashes the neuron’s pre-

activation between 0 and 1

• Always positive

• Bounded

• Strictly increasing



Activation Functions – tanh
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Hyperbolic tangent (tanh) 

activation function

• Squashes the neuron’s pre-

activation between -1 and 1

• Positive or negative

• Bounded

• Strictly increasing



Activation Functions – ReLU
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Rectified linear activation 

function (ReLU)

• Bounded below by 0 (always 

non-negative)

• Not upper bounded

• Strictly increasing

• Tends to give neurons with 

sparse activities



Linear Capacity of an Artificial Neuron
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‣ Aka logistic regression
‣ if greater than 0.5, predict 

class 1
‣ otherwise, predict class 0

Similar idea can be applied
with tanh x1 x2

x2

R1

R2

x1

uches

decision boundary is linear

Topics: capacity, decision boundary of neuron

• Could do binary classification:

‣ with sigmoid, interpret neuron as estimating 𝑝(𝑦 = 1|𝐱)



Artificial Neuron for Basic Logic Gates
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Topics: capacity of a single neuron

• Can solve linearly separable problems



Artificial Neuron NOT for Non-linear Problems
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• ...unless the input is transformed into a better representation

Topics: capacity of a single neuron

• CAN’T solve non-linear separable problems



Representation Matters
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Goodfellow et al., “Deep Learning”, 2016



Neural Network – Single Layer
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Topics: single-layer neural network (NN)

• Hidden layer pre-activation:

1
x1 x n
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...
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x j
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...

• Hidden layer activation:

• Output layer activation:



Neural Network – Softmax Activation

Summer 2022 NEURAL NETWORKS 20

Topics: softmax activation function

• For multi-class classification:

• need multiple outputs (one per class)

• wish to estimate conditional probability 𝑝 𝑦 = 𝑐 𝐱)

• Use softmax activation at the output:

‣ strictly positive
‣ sums to one

…Predicted class is one with highest estimated probability



Neural Network – Multilayer Neural Network
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• Hidden layer activation (𝑙 = 1,… , 𝐿):

• Output layer activation (𝑙 = 𝐿 + 1):

h(1)(x)

W (1)

W(2)

W(3)

b(1)

1

b(2)

1

b(3)

h(2)(x)

Topics: multilayer NN 

• Could have 𝐿 hidden layers

• Layer pre-activation for 𝑙 > 0:



Capacity of a Single Layer NN (1)
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Capacity of a Single Layer NN (2)
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Universal Approximation Theorem
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Topics: universal approximators

• “A single hidden layer NN with a linear output unit can approximate any 

continuous function arbitrarily well, given enough hidden units” (Hornik, 

1991)

• Result applies to many other hidden layer activation functions, e.g., 

sigmoid, tanh, etc.

• A good result but there is no guarantee that a learning algorithm exists to 

derive the parameters for this arbitrarily complex function approximator



Coding Break
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Parallel with Visual Cortex (1)
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Parallel with Visual Cortex (2)
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Parallel with Visual Cortex (3)
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Parallel with Visual Cortex (4)

Summer 2022 NEURAL NETWORKS 29



Parallel with Visual Cortex (5)
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Parallel with Visual Cortex (6)
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Parallel with Visual Cortex (7)
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Concluding Remarks
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• Introduction to artificial neural networks! The most popular computational 
system in machine learning nowadays

• Loads of material out there; but get comfortable with PyTorch first

• Quick example code of MLPs with PyTorch:

https://github.com/mazrk7/EECE5644_IntroMLPR_LectureCode/blob/main/n
otebooks/neural_networks/mlp_pytorch.ipynb

• Questions?

https://github.com/mazrk7/EECE5644_IntroMLPR_LectureCode/blob/main/notebooks/neural_networks/mlp_pytorch.ipynb

