EECE 5644: Regularization

Mark Zolotas

E-mail: <u>m.zolotas@northeastern.edu</u> Webpage: <u>https://coe.northeastern.edu/people/zolotas-mark/</u>

Tentative Course Outline (Wks. 3-4)

Topics	Dates	Assignments	Additional Reading
Naïve Bayes Classifier & Homework 0 Practice Lab	07/18	Homework 2 released on Canvas on 07/22 Due 08/01	N/A
Model Fitting/Training: Bayesian Parameter Estimation	07/19-20		Chpts. 4.1-4.3, 8.7.2-3 Murphy 2022
Logistic Regression	07/21		Chpt. 10 Murphy 2022
Model Selection: Hyperparameter Tuning, k-fold Cross-Validation	07/26	Homework 3 released on Canvas on 07/29 Due 08/08	Chpts. 4.5, 5.2, 5.4.3 Murphy 2022
Regularization, Ridge and Lasso Regression	07/27		Chpts. 4.5, 11.1-11.4 Murphy 2022
Neural Networks: Multilayer Perceptrons & Backpropagation	07/28		Chpts. 13.1-13.5 Murphy 2022

Training models using MLE, or L(θ) in general, risks perfectly fitting the training data D_{train} and **not generalizing** well to unseen, future data...

- Generalization gap: $L(\theta; p^*) L(\theta; D_{\text{train}})$
- Large generalization gap (low empirical, high theoretical loss) = **Overfitting**

Performance Estimation – Test Set

• If we are only interested in evaluating **generalization performance**:

• If large $N \rightarrow$ train/test split (80/20); small $N \rightarrow$ K-fold CV on D_{train}

Model Selection – Validation Set

• If large $N \rightarrow$ train/valid/test (60/20/20); small $N \rightarrow$ K-fold CV on D_{train} !

Model Selection – K-fold CV

• **Inner loop** of K-fold CV for one tested model *m*:

Summer 2022

K-fold CV Algorithm

Algorithm 1 K-fold Cross-validation to estimate (hyper)parameters

Partition D into
$$D_1, D_2, \ldots, D_K$$
 with equal partition sizes (or close)
for $m \in \{1, \ldots, M\}$ do
for $k \in \{1, \ldots, K\}$ do
 $D_{valid} = D_k; D_{train} = D - D_k$
 $\theta_{m,k}^* = \arg\min L_{train}(\theta_m; D_{train})$
 $\epsilon_{m,k} = L_{valid}(\theta_{m,k}^*; D_{valid})$
end for
 $\epsilon_m = \frac{1}{K} \sum_{k=1}^{K} \epsilon_{m,k} \leftarrow A_{vg}$ CV error
for model m
end for
"Best" model has smallest average error: $m^* = \underset{m \in \{1, \ldots, M\}}{\arg\min L_{train}(\theta_{m^*}; D)}$
Given m^* , train on entire dataset: $\theta_{m^*}^* = \arg\min L_{train}(\theta_{m^*}; D)$

Summer 2022

Nested CV

- Inner loop for model selection
- **Outer loop** to estimate generalization accuracy
- Provides an **unbiased** estimate of true error
- Can be **slow**, e.g., 5*2*M iterations
- Useful for **algorithm comparison**

Source: https://androidkt.com/pytorch-k-fold-cross-validation-using-dataloader-and-sklearn/

- Hold out data \rightarrow Split into data subsets D_{train} and D_{test} (80/20)
- CV \rightarrow K-folds of D_{valid} or D_{test} ; all data used for training eventually

• Regularization \rightarrow Automatically controls the complexity of the model

Tightly coupled with MAP estimation of O • And others...

• **Key Idea** – Add a term to loss function that penalizes complexity:

$$L(\boldsymbol{\theta};\underline{\lambda}) = \frac{1}{N} \sum_{i=1}^{N} l\left(y^{(i)}, f(\mathbf{x}^{(i)};\boldsymbol{\theta})\right) + \lambda C(\boldsymbol{\theta})$$

Regularization for Linear Regression

Red: Training set Green: True target function Blue: What we have learned (overfit)

Bias-Variance Tradeoff

Bias = Difference between estimated and true models Variance = Model sensitivity/fluctuations to different training sets

Mean Squared Error (MSE) proportional to Variance and Bias

• Recall linear regression model as a conditional Gaussian:

$$p(y | \mathbf{x}; \boldsymbol{\theta}) = \mathcal{N}(\mathbf{w}^{\mathsf{T}}\mathbf{x}, \sigma^2)$$

• Optimize using MLE, i.e., minimize NLL:

$$\operatorname{NLL}(\boldsymbol{\theta}) = \frac{1}{2\sigma^2} \sum_{i=1}^{N} (y^{(i)} - \mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)})^2 + \frac{N}{2} \log(2\pi\sigma^2)$$

• Assume fixed variance, e.g. $\sigma = 1$, and focus on $\mu = \mathbf{w}^{\mathrm{T}}\mathbf{x}$:

$$NLL(\boldsymbol{\theta}) = \frac{1}{2} \sum_{i=1}^{N} (y^{(i)} - \mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)})^2 = \frac{1}{2} ||\mathbf{X}\mathbf{w} - \mathbf{y}||_2^2 = \frac{1}{2} (\mathbf{X}\mathbf{w} - \mathbf{y})^{\mathsf{T}} (\mathbf{X}\mathbf{w} - \mathbf{y})$$

Summer 2022

Ridge Regression – Formulation

• Penalize large weight magnitudes of NLL(θ) to avoid overfitting

Also called
$$l_2$$

regularization or
weight decay
$$= \frac{1}{2} \left[\mathbf{X} \mathbf{W} - \mathbf{y} \right]^{\mathsf{T}} (\mathbf{X} \mathbf{W} - \mathbf{y}) + \frac{\lambda \mathbf{W}^{\mathsf{T}} \mathbf{W}}{\lambda ||\mathbf{w}||_{\mathbf{x}}^{\mathsf{T}}} + \frac{\lambda \mathbf{W}^{\mathsf{T}} \mathbf{W}}{\lambda ||\mathbf{w}||_{$$

- $\Lambda \geq 0$ is the regularization parameter
- As if computing the $\hat{\theta}_{MAP}$ estimate with a zero-mean Gaussian prior on the parameters or in our cases, weights: $p(\mathbf{w}) = N(\mathbf{w} | \mathbf{0}, \lambda^{-1}\mathbf{I})$

$$\theta = [\omega_1 \cdots \omega_n]^T$$

• Uses a **Laplace prior** instead, with a resulting form:

$$PNLL(\boldsymbol{\theta}) = \frac{1}{2} \sum_{i=1}^{N} (y^{(i)} - \mathbf{w}^{\mathsf{T}} \tilde{\mathbf{x}}^{(i)})^{2} + \lambda \sum_{j=1}^{n} |w_{j}|$$
$$= \frac{1}{2} (\mathbf{X} \mathbf{w} - \mathbf{y})^{\mathsf{T}} (\mathbf{X} \mathbf{w} - \mathbf{y}) + \lambda ||\mathbf{w}||_{1} \qquad \underset{\text{of w}}{\overset{\text{of w}}{\underset{\text{regularization}}}}$$

- Lasso: "least absolute shrinkage and selection operator"
- Warning: Gradients cannot be computed around zero (absolute value)

Geometric Interpretation

- **Ridge** regression **shrinks** all coefficients (parameters)
- Lasso regression sets coefficients to zero (sparse solution); feature selection

Regularization for Logistic Regression

Same idea as **Ridge** regression:

$$PNLL(\boldsymbol{\theta}) = NLL(\boldsymbol{\theta}) + \lambda \mathbf{w}^{\mathsf{T}} \mathbf{w}$$
$$\nabla_{\boldsymbol{\theta}} PNLL(\boldsymbol{\theta}) = \nabla_{\boldsymbol{\theta}} NLL(\boldsymbol{\theta}) + 2\lambda \mathbf{w}$$

- **Explicit** regularization adds a term to optimization problem to penalize complexity, e.g., **prior** term for **MAP** parameter estimation
- **Implicit** regularization refers to other techniques like early stopping
- Some early CV-related slides adapted from:

https://arxiv.org/pdf/1811.12808.pdf

• Questions?