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Tentative Course Outline (Wks. 3-4)
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Topics Dates Assignments Additional 
Reading

Naïve Bayes Classifier & 
Homework 0 Practice Lab 07/18

Homework 2 released on 
Canvas on 07/22

Due 08/01

N/A

Model Fitting/Training: Bayesian 
Parameter Estimation 07/19-20 Chpts. 4.1-4.3, 8.7.2-3

Murphy 2022

Logistic Regression 07/21 Chpt. 10
Murphy 2022

Model Selection: Hyperparameter 
Tuning, k-fold Cross-Validation 07/26

Homework 3 released on 
Canvas on 07/29

Due 08/08

Chpts. 4.5, 5.2, 5.4.3
Murphy 2022

Regularization, Ridge and Lasso 
Regression 07/27 Chpts. 4.5, 11.1-11.4

Murphy 2022
Neural Networks: Multilayer 

Perceptrons & Backpropagation 07/28 Chpts. 13.1-13.5
Murphy 2022



Overfitting
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• Training models using MLE, or 𝐿𝐿 𝜽𝜽 in general, risks perfectly fitting the 
training data 𝐷𝐷train and not generalizing well to unseen, future data…

• Generalization gap: 𝐿𝐿 𝜽𝜽;𝑝𝑝∗ − 𝐿𝐿(𝜽𝜽;𝐷𝐷train)

• Large generalization gap (low empirical, high theoretical loss) = Overfitting

Error

Complexity

Generalization 
Error

Train 
Error

Generalization 
Gap



Performance Estimation – Test Set
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• If we are only interested in evaluating generalization performance:

𝐷𝐷 = 𝐱𝐱(𝑖𝑖),𝑦𝑦(𝑖𝑖) 𝐷𝐷train

• If large 𝑁𝑁 train/test split (80/20); small 𝑁𝑁 K-fold CV on 𝐷𝐷train

𝐷𝐷test

(1) Split data

Hyperparams.
Learning Alg. (2) Fit a model
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Final 
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Hyperparams.
Learning Alg.

(4) Deploy
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Model Selection – Validation Set
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• Wish to estimate performance AND perform model selection:

𝐷𝐷 = 𝐱𝐱(𝑖𝑖),𝑦𝑦(𝑖𝑖)
𝐷𝐷train

• If large 𝑁𝑁 train/valid/test (60/20/20); small 𝑁𝑁 K-fold CV on 𝐷𝐷train!

𝐷𝐷valid
(1) Split data

Hyperparams.
Learning Alg.

(2) Fit multiple 
models𝐱𝐱train

(𝑖𝑖) ,𝑦𝑦train
(𝑖𝑖)

(3) Model selection

Final 
Model

Best Hypers.
Learning Alg.

(6) Deploy
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𝑝𝑝(𝑦𝑦|𝐱𝐱;𝜽𝜽𝑚𝑚)

𝑚𝑚
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Model

𝑝𝑝(𝑦𝑦|𝐱𝐱;𝜽𝜽𝑚𝑚)
𝐱𝐱valid

(𝑖𝑖) ,𝑦𝑦valid
(𝑖𝑖)

Prediction �𝑦𝑦(𝑖𝑖)
Best 𝑚𝑚∗

Performance
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Model Selection – K-fold CV
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𝐷𝐷1

𝐷𝐷2

𝐷𝐷3

𝐷𝐷4

𝐷𝐷5

• Inner loop of K-fold CV for one tested model 𝑚𝑚: 

Training fold 𝑫𝑫−𝑫𝑫𝒌𝒌Validation 
fold 𝑫𝑫𝒌𝒌
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Perf. 𝜖𝜖𝑚𝑚,2

Perf. 𝜖𝜖𝑚𝑚,3

Perf. 𝜖𝜖𝑚𝑚,4

Perf. 𝜖𝜖𝑚𝑚,5

𝐷𝐷train
Hyperparams.
Learning Alg.

Model  
𝑝𝑝(𝑦𝑦|𝐱𝐱;𝜽𝜽𝒎𝒎,𝒌𝒌)

Pick 𝒎𝒎∗ that 
minimizes 

this average 
error

𝐷𝐷validPrediction �𝑦𝑦(𝑖𝑖)
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(𝑖𝑖) ,𝑦𝑦valid
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K-fold CV Algorithm
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Nested CV
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Source: https://androidkt.com/pytorch-k-fold-cross-validation-using-dataloader-and-sklearn/

• Inner loop for model 
selection

• Outer loop to estimate 
generalization accuracy

• Provides an unbiased
estimate of true error

• Can be slow, e.g., 5*2*M 
iterations

• Useful for algorithm 
comparison

https://androidkt.com/pytorch-k-fold-cross-validation-using-dataloader-and-sklearn/


Techniques to Handle Overfitting
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• Hold out data  Split into data subsets 𝐷𝐷train and 𝐷𝐷test (80/20)

• CV  K-folds of 𝐷𝐷valid or 𝐷𝐷test; all data used for training eventually

• Regularization  Automatically controls the complexity of the model

• And others…
 Feature selection  Eliminate unwanted features
 Data augmentation  Transform inputs for more data (e.g. rotate, flip, etc.)
 Early stopping Monitor validation performance and stop training early
 Feature scaling  Expect all inputs to be similar in magnitude



Regularization
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• Key Idea – Add a term to loss function that penalizes complexity: 

• Works well with high 𝑛𝑛-dimensional inputs

• 𝜆𝜆 ≥ 0 is the regularization parameter (also a hyperparameter)

• 𝐶𝐶(𝜽𝜽) is the complexity penalty, e.g., negative log prior 𝐶𝐶 𝜽𝜽 = − log𝑝𝑝 𝜽𝜽



Regularization for Linear Regression
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Red: Training set
Green: True target function
Blue: What we have learned (overfit)



Bias-Variance Tradeoff
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Bias = Difference between estimated and true models
Variance = Model sensitivity/fluctuations to different training sets
Mean Squared Error (MSE) proportional to Variance and Bias

Reduce model 
complexity; 

Reduce model 
variance



Least Squares Linear Regression

Summer 2022 13REGULARIZATION

• Recall linear regression model as a conditional Gaussian:

• Optimize using MLE, i.e., minimize NLL:

• Assume fixed variance, e.g. 𝜎𝜎 = 1, and focus on 𝜇𝜇 = 𝐰𝐰T𝐱𝐱:  



Ridge Regression – Formulation
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• Penalize large weight magnitudes of NLL(𝜽𝜽) to avoid overfitting

• 𝜆𝜆 ≥ 0 is the regularization parameter

• As if computing the �𝜽𝜽MAP estimate with a zero-mean Gaussian prior on the 
parameters or in our cases, weights: 𝑝𝑝 𝐰𝐰 = 𝑁𝑁 𝐰𝐰 𝟎𝟎,𝜆𝜆−1𝐈𝐈)

Also called 𝒍𝒍𝟐𝟐
regularization or 

weight decay



Lasso Regression – Formulation
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• Uses a Laplace prior instead, with a resulting form:

Also called 𝒍𝒍𝟏𝟏
regularization

• Lasso: “least absolute shrinkage and selection operator”

• Warning: Gradients cannot be computed around zero (absolute value)



Geometric Interpretation

Summer 2022 16REGULARIZATION

• Ridge regression shrinks all coefficients (parameters)

• Lasso regression sets coefficients to zero (sparse solution); feature selection 



Regularization for Logistic Regression
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Same idea as Ridge regression:



Concluding Remarks
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• Explicit regularization adds a term to optimization problem to penalize 
complexity, e.g., prior term for MAP parameter estimation

• Implicit regularization refers to other techniques like early stopping

• Some early CV-related slides adapted from:

https://arxiv.org/pdf/1811.12808.pdf

• Questions?

https://arxiv.org/pdf/1811.12808.pdf
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