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Tentative Course Outline (Wks. 3-4)
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Topics Dates Assignments Additional 
Reading

Naïve Bayes Classifier & 
Homework 0 Practice Lab 07/18

Homework 2 released on 
Canvas on 07/22

Due 08/01

N/A

Model Fitting/Training: Bayesian 
Parameter Estimation 07/19-20 Chpts. 4.1-4.3, 8.7.2-3

Murphy 2022

Logistic Regression 07/21 Chpt. 10
Murphy 2022

Model Selection: Hyperparameter 
Tuning, k-fold Cross-Validation 07/26

Homework 3 released on 
Canvas on 07/29

Due 08/08

Chpts. 4.5, 5.2, 5.4.3
Murphy 2022

Regularization, Ridge and Lasso 
Regression 07/27 Chpts. 4.5, 11.1-11.4

Murphy 2022
Neural Networks: Multilayer 

Perceptrons & Backpropagation 07/28 Chpts. 13.1-13.5
Murphy 2022
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Dataset
- Enough data?
- Representative 

of my problem?

Probability & Statistics
ML, MAP, Param. Estimation

Linear Algebra
EVD/SVD

Optimization
GD, SGD

Data Preprocessing
- Random shuffle
- Feature scaling
- Train/Test splits

Cat | Dog

Unsupervised Learning
Dimensionality reduction

No
Yes

Supervised Learning
Regression 

Classification

Model

𝐿𝐿(𝜽𝜽)

Bayesian 
Decision Theory

Model

PCA

Regression
e.g., Least 
Squares

Classifiers
e.g., Logistic Regression

True pdfs known



ML & MAP Parameter Estimation
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• Given i.i.d. samples {𝐱𝐱 1 , … , 𝐱𝐱 𝑁𝑁 } from a dataset, take log likelihood (LL):

• MLE: Good values of 𝜽𝜽 should assign high probability to 𝐷𝐷

• MAP: Adds a prior (regularization term) to tackle overfitting

Susceptible to 
overfitting; 

underperforms
when small 𝑁𝑁



Sigmoid Function
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• Model predictions/hypotheses:

• Takes a probabilistic approach to learning discriminative functions

• Desire 𝑔𝑔(𝐰𝐰𝑇𝑇𝐱𝐱) to output probabilities 𝑝𝑝 𝑦𝑦 = 1 𝐱𝐱;𝜽𝜽)

Sigmoid/Logistic 
Function



Binary Logistic Regression – Decision Boundary
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• In a 0-1 loss setting with 𝑔𝑔(𝐰𝐰𝑇𝑇𝐱𝐱) outputting 𝑝𝑝 𝑦𝑦 = 1 𝐱𝐱;𝜽𝜽), our optimal 
decision rule is to predict 𝑦𝑦 = 1 iff: 

Linear classifier!

• Rearrange and take logs:

• Decision boundary:



Binary Logistic Regression – MLE/NLL
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• Find critical point where 𝑑𝑑NLL 𝜽𝜽
𝑑𝑑𝐰𝐰

= 0, so first derive gradient of NLL(𝜽𝜽):

Supervised 
conditional 

setting

Binary Cross 
Entropy 



Binary Logistic Regression – Gradient Descent
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Overfitting
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• Training models using MLE, or 𝐿𝐿 𝜽𝜽 in general, risks perfectly fitting the 
training data 𝐷𝐷train and not generalizing well to unseen, future data…

• Assume we had access to the true distribution 𝑝𝑝∗ 𝐱𝐱,𝑦𝑦 responsible for 
generating 𝐷𝐷train, then the theoretical expected loss would be:

• Generalization gap: 𝐿𝐿 𝜽𝜽;𝑝𝑝∗ − 𝐿𝐿(𝜽𝜽;𝐷𝐷train)

But we don’t know 𝒑𝒑∗
and can only measure 

sample error

• Large generalization gap (low empirical, high theoretical loss) = Overfitting

Sample Error

True Error



Detecting Overfitting
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Figure 1.7: (a-c) Polynomials of 
degrees 2, 14 and 20 fit to 21 

datapoints. (d) MSE vs degree.

Murphy, “Probabilistic Machine 
Learning: An Introduction”, 2022



Test Set
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• If only the training set was used to evaluate models, the most complex one 
would always dominate  Evaluate based on test set loss

• Partition your data into 2 subsets: a training set 𝐷𝐷train and a test set 𝐷𝐷test

• Approximation of true error:

• Consider previous polynomial regression example 
 Multiple models being trained with varied polynomial degrees
 Should we select the “best” one based on test set loss?



No Free Lunch Theorem
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“All models are wrong, but some models are useful” – George E. P. Box

• No single best machine learning algorithm for all kinds of problems

• Pick a suitable model based on:
 Domain knowledge
 …and/or trial and error  Need another data subset for model selection

Test set is ONLY for model 
evaluation on unseen data and 

NOT model selection

• Assumptions (inductive bias) for one domain may not transfer to another

• Example: the simplest of two models is the preferred (Occam’s razor)



Validation Set
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• Split data into 3 disjoint sets: training 𝐷𝐷train, test 𝐷𝐷test and validation 𝐷𝐷valid

• Often use splits like 60:20:20 or 50:25:25 if you have a lot of data

• Select the model that performs “best”, e.g., in terms of 𝐿𝐿 𝜽𝜽;𝐷𝐷valid , on the 
validation set from multiple models with a different:
 Number of training epochs
 Learning rate
 Random seed value
 Initial parameter configuration
 …

• Validation/development/holdout set is for model selection



Model Selection using the Validation Set

Summer 2022 14MODEL SELECTION



K-fold Cross-validation – Key Idea
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• Previous technique works well when a lot of data is available

• In small data settings though, the model underfits with insufficient data

• Cross-validation (CV): Resampling solution to this 
problem where different portions of data are used for 
training and testing at each iteration of the procedure

Source: https://androidkt.com/pytorch-k-fold-cross-validation-using-dataloader-and-sklearn/

• K-fold CV: Split training data into 𝐾𝐾 folds, 𝐷𝐷1, … ,𝐷𝐷𝐾𝐾, such 
that 𝐷𝐷1 ∪ ⋯∪ 𝐷𝐷𝐾𝐾 = 𝐷𝐷 and 𝐷𝐷𝑖𝑖 ∩ 𝐷𝐷𝑗𝑗 = ∅ ∀ (𝑖𝑖, 𝑗𝑗), then train 
all folds but 𝑘𝑘𝑡𝑡𝑡, and test on 𝑘𝑘𝑡𝑡𝑡 in round-robin manner

https://androidkt.com/pytorch-k-fold-cross-validation-using-dataloader-and-sklearn/


K-fold Cross-validation – Notation
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• Let 𝑚𝑚 ∈ 𝑀𝑀 competing models each have parameters 𝜽𝜽m optimized 
according to some training objective 𝐿𝐿train(𝜽𝜽𝑚𝑚)

• The “best” 𝑚𝑚∗ is selected based on some validation objective 𝐿𝐿valid(𝜽𝜽𝑚𝑚)

• Given a K-fold partition 𝐷𝐷𝑘𝑘, let 𝜽𝜽m,𝑘𝑘
∗ be the optimal parameters for model 𝑚𝑚

trained without 𝐷𝐷𝑘𝑘:

• Validate 𝜽𝜽m,𝑘𝑘
∗ quality using the validation objective function:



K-fold Cross-validation – Algorithm
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K-fold Cross-validation – Next Steps
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• Estimate future performance on independent test set 𝐷𝐷test

• Evaluate based on same measure as for CV: 𝐿𝐿valid(𝜽𝜽𝑚𝑚∗
∗ ;𝐷𝐷test)

• Can also use K-fold CV on test set, known as Nested CV
 Split 𝐷𝐷 into 𝐾𝐾 partitions, assign 𝐷𝐷𝑗𝑗 for testing
 Use (𝐾𝐾 − 1)-fold CV on remaining 𝐷𝐷 − 𝐷𝐷𝑗𝑗
 Provides K estimates of test performance: 𝐿𝐿valid(𝜽𝜽𝑚𝑚∗,𝑗𝑗

∗ ;𝐷𝐷j)
 Estimate generalization error by averaging K test set scores
 Unbiased estimate of generalization performance



Early Stopping
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Iterative optimization allows us to monitor validation performance in 
parallel with training. Stop early at signs of overfitting.

Murphy, “Probabilistic Machine Learning: An Introduction”, 2022



Coding Break
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Concluding Remarks
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• Training set to fit models, test set to evaluate model predictive performance 
on future data, and validation set to select the best model configuration

• Code:

https://github.com/mazrk7/EECE5644_IntroMLPR_LectureCode/blob/main/no
tebooks/linear_regression/ls_polynomial_reg_cv.ipynb

• For a complete review on model selection:

https://arxiv.org/pdf/1811.12808.pdf

• Questions?

https://github.com/mazrk7/EECE5644_IntroMLPR_LectureCode/blob/main/notebooks/linear_regression/ls_polynomial_reg_cv.ipynb
https://arxiv.org/pdf/1811.12808.pdf
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