EECE 5644: Logistic Regression

Mark Zolotas

E-mail: <u>m.zolotas@northeastern.edu</u> Webpage: <u>https://coe.northeastern.edu/people/zolotas-mark/</u>

Tentative Course Outline (Wks. 3-4)

Topics	Dates	Assignments	Additional Reading
Naïve Bayes Classifier & Homework 0 Practice Lab	07/18	Homework 2 released on Canvas on 07/22 Due 08/01	N/A
Model Fitting/Training: Bayesian Parameter Estimation	07/19-20		Chpts. 4.1-4.3, 8.7.2-3 Murphy 2022
Logistic Regression	07/21		Chpt. 10 Murphy 2022
Model Selection: Hyperparameter Tuning, k-fold Cross-Validation	07/25	Homework 3 released on Canvas on 07/29 Due 08/08	Chpts. 4.5, 5.2, 5.4.3 Murphy 2022
Regularization, Ridge and Lasso Regression	07/26		Chpts. 4.5, 11.1-11.4 Murphy 2022
Neural Networks: Multilayer Perceptrons & Backpropagation	07/27-28		Chpts. 13.1-13.5 Murphy 2022

Maximum Likelihood Estimation (MLE)

• Given i.i.d. samples $\{\mathbf{x}^{(i)}, y^{(i)}\}_{i=1}^{N}$ from a dataset, take **log likelihood (LL)**:

$$LL(\boldsymbol{\theta}) = \log p(\mathcal{D} \mid \boldsymbol{\theta}) = \sum_{i=1}^{N} \log p(\mathbf{x}^{(i)}, y^{(i)} \mid \boldsymbol{\theta})$$

Or if **unsupervised** then unconditional:
$$LL(\boldsymbol{\theta}) = \sum_{i=1}^{N} \log p(\mathbf{x}^{(i)} \mid \boldsymbol{\theta})$$

- Key Idea: Good values of θ should assign high probability to D
- Motivates the choice to **MLE criterion**:

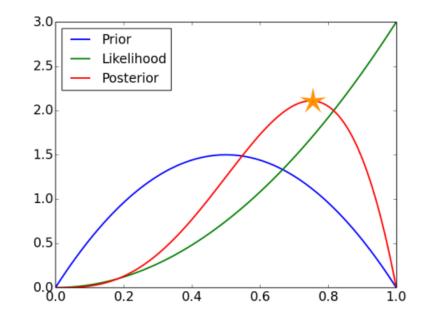
$$\hat{\boldsymbol{\theta}}_{\text{MLE}} = \arg \max_{\boldsymbol{\theta}} \sum_{i=1}^{N} \log p(\mathbf{x}^{(i)} \mid \boldsymbol{\theta})$$

Maximum a Posteriori (MAP) Estimation

• To convert Bayesian parameter estimation into an **optimization** problem, take the <u>most probable</u> parameter estimate (**mode**)

 $\hat{\boldsymbol{\theta}}_{\text{MAP}} = \underset{\boldsymbol{\theta}}{\arg\max} \log p(\boldsymbol{\theta} \mid D) = \underset{\boldsymbol{\theta}}{\arg\max} \left[\log p(D \mid \boldsymbol{\theta}) + \log p(\boldsymbol{\theta}) \right]$

- Can obtain different loss functions from the posterior distribution
 - $\bullet \quad Min. MSE \Longrightarrow Mean$
 - Min. Absolute Error => Median
 - Identical for Gaussian posterior



Similar framework to MLE, which can be summarized as:

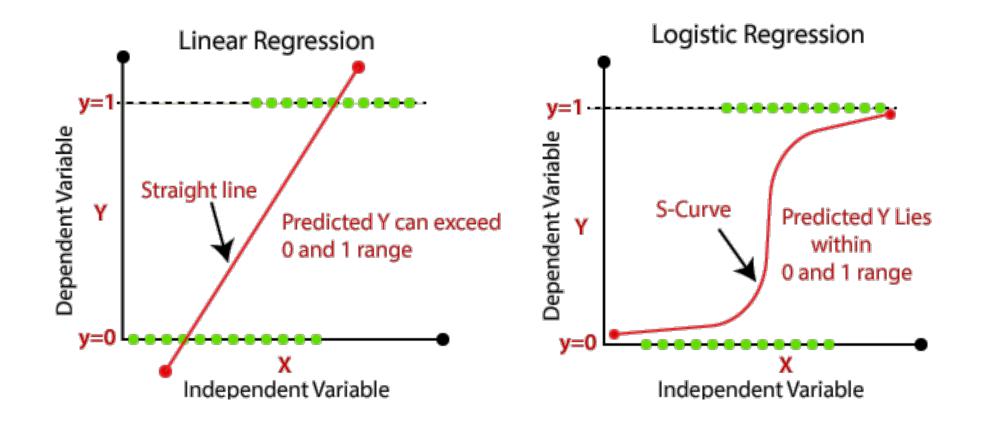
1. Choose parametric model for $p(D | \theta)$ AND prior $p(\theta)$, e.g., **conjugate** prior

$$\hat{\boldsymbol{\theta}}_{\text{MAP}} = \arg \max_{\boldsymbol{\theta}} \left[\underbrace{\log p(D \mid \boldsymbol{\theta})}_{\boldsymbol{\theta}} + \underbrace{\log p(\boldsymbol{\theta})}_{\boldsymbol{\theta}} \right]$$

2. Write out log-posterior as log-likelihood plus log-prior, express as an optimization problem

3. Use an optimization algorithm, e.g., GD or SGD, to calculate argmax and derive $\hat{\theta}_{MAP}$

Logistic Regression



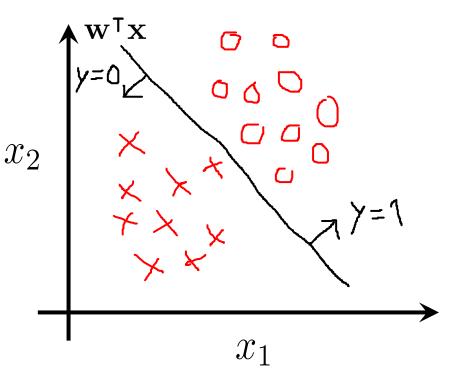
Let $\mathcal{D} = \{(\mathbf{x}^{(i)}, y^{(i)})\}_{i=1}^N$, N training samples Inputs $\mathbf{x} \in \mathbb{R}^n$, discrete valued labels $y \in \{0, \dots, C\}$

- Find decision boundaries by **hyperplane**
- A linear classifier is typically of the form:

$$y = g(\mathbf{x}; \boldsymbol{\theta}) = g(\mathbf{w}^{\mathsf{T}} \mathbf{x})$$

• Decision rule:

$$g(\mathbf{x}; \boldsymbol{\theta}) = \begin{cases} 1 & \text{if } \mathbf{w}^{\mathsf{T}} \mathbf{x} > \gamma \\ 0 & \text{otherwise} \end{cases}$$



Logistic Regression – Sigmoid Function

- Takes a probabilistic approach to learning discriminative functions
- Desire $g(\mathbf{w}^T \mathbf{x})$ to output probabilities $p(y = 1 | \mathbf{x}; \boldsymbol{\theta})$ $0 \le g(\mathbf{w}^T \mathbf{x}) \le 1$

• Model predictions/hypotheses:

$$\hat{y} = g(\mathbf{w}^{\mathsf{T}}\mathbf{x}) = \frac{1}{1 + e^{-\mathbf{w}^{\mathsf{T}}\mathbf{x}}}$$

where
$$g(z) = \frac{1}{1 + e^{-z}} = \frac{e^z}{e^z + 1}$$

Sigmoid/Logistic Function

Summer 2022

6

4

2

05

0

- The quantity *z* input to the sigmoid is known as **logit**
- Logistic regression like linear regression has a linear predictor form $\mathbf{w}^T \tilde{\mathbf{x}}$ with an **augmented** input vector $\tilde{\mathbf{x}}$ to account for the line's bias w_0 as:

$$\hat{y} = g(\mathbf{w}^{\mathsf{T}} \tilde{\mathbf{x}}) = g\left(x_0 w_0 + \sum_{j=1}^n x_j w_j\right) = \frac{1}{1 + e^{-\mathbf{w}^{\mathsf{T}} \tilde{\mathbf{x}}}}$$

where $\mathbf{w} \in \mathbb{R}^{n+1}, \tilde{\mathbf{x}} \in \mathbb{R}^{n+1}$

Logistic Regression – Decision Boundary

• In a 0-1 loss setting with $g(\mathbf{w}^T \mathbf{x})$ outputting $p(y = 1 | \mathbf{x}; \boldsymbol{\theta})$, our optimal decision rule is to predict y = 1 iff:

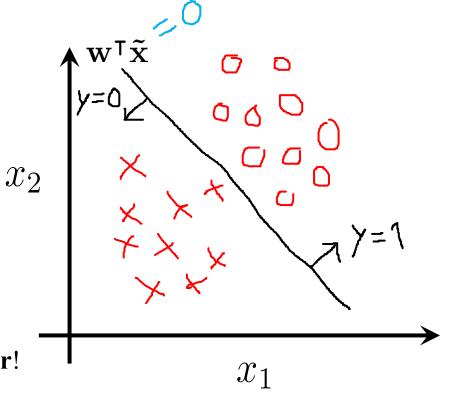
$$p(y = 1 | \mathbf{x}; \boldsymbol{\theta}) > p(y = 0 | \mathbf{x}; \boldsymbol{\theta})$$
$$g(\mathbf{w}^{\mathsf{T}} \tilde{\mathbf{x}}) > 1 - g(\mathbf{w}^{\mathsf{T}} \tilde{\mathbf{x}})$$

• Rearrange and take logs:

$$\log g(\mathbf{w}^{\mathsf{T}} \tilde{\mathbf{x}}) - \log \left(1 - g(\mathbf{w}^{\mathsf{T}} \tilde{\mathbf{x}})\right) > 0$$

• Decision boundary:

$$\sum_{j=0}^{n} x_j w_j > 0 \quad \text{Linear classifier!}$$



Nonlinear Classification

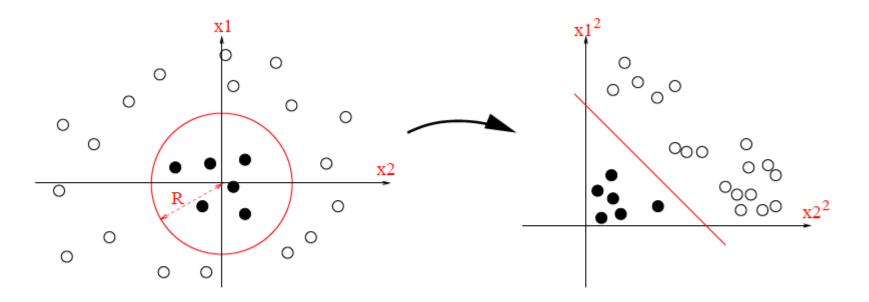


Figure 10.3: Illustration of how we can transform a quadratic decision boundary into a linear one by transforming the features from $x = (x_1, x_2)$ to $\phi(x) = (x_1^2, x_2^2)$. Used with kind permission of Jean-Philippe Vert.

Transform features $\phi(\mathbf{x})$, e.g. $\phi(x_1, x_2) = [1, x_1^2, x_2^2]$ with $\mathbf{w} = [-R^2, 1, 1]$, such that the decision boundary $\mathbf{w}^{\intercal}\phi(\mathbf{x}) = x_1^2 + x_2^2 - R^2$ is a circle with radius R.

Sources – Kevin Murphy, "Probabilistic Machine Learning: An Introduction", 2022

Summer 2022

LOGISTIC REGRESSION

Summary of MLE framework for parameter estimation:

1. Choose parametric model for $p(D \mid \theta)$ and define PMF/PDF

2. Write out log-likelihood, $LL(\theta)$ or $NLL(\theta)$, and express as argmax/min for optimization

3. Use an optimization algorithm, e.g., GD or SGD to calculate argmax and derive $\hat{\theta}_{MLE}$

Logistic Regression – Class-Conditional Likelihood

• Observe that our **binary** probabilistic classifier corresponds to:

$$p(y \mid \mathbf{x}; \boldsymbol{\theta}) = \text{Ber} \left(y \mid g(\mathbf{w}^{\mathsf{T}} \tilde{\mathbf{x}}) \right)$$

= $g(\mathbf{w}^{\mathsf{T}} \tilde{\mathbf{x}})^{y} (1 - g(\mathbf{w}^{\mathsf{T}} \tilde{\mathbf{x}}))^{(1-y)}$

• Thus **class-conditional likelihood** for all *N* training samples is:

$$LL(\boldsymbol{\theta}) = \frac{1}{N} \log p(\mathcal{D} \mid \boldsymbol{\theta}) = \frac{1}{N} \log \prod_{i=1}^{N} \left[g(\mathbf{w}^{\mathsf{T}} \tilde{\mathbf{x}}^{(i)})^{y^{(i)}} (1 - g(\mathbf{w}^{\mathsf{T}} \tilde{\mathbf{x}}^{(i)}))^{(1-y^{(i)})} \right]$$
$$= \frac{1}{N} \sum_{i=1}^{N} \log \left[g(\mathbf{w}^{\mathsf{T}} \tilde{\mathbf{x}}^{(i)})^{y^{(i)}} (1 - g(\mathbf{w}^{\mathsf{T}} \tilde{\mathbf{x}}^{(i)}))^{(1-y^{(i)})} \right]$$
$$= \frac{1}{N} \sum_{i=1}^{N} \left[y^{(i)} \log g(\mathbf{w}^{\mathsf{T}} \tilde{\mathbf{x}}^{(i)}) + (1 - y^{(i)}) \log(1 - g(\mathbf{w}^{\mathsf{T}} \tilde{\mathbf{x}}^{(i)})) \right]$$

Derivative of Sigmoid

• **Optimization problem:** Minimize negative class-conditional log likelihood

$$\bigotimes_{\theta} \operatorname{arg\,min} \operatorname{NLL}(\boldsymbol{\theta}) = \operatorname{arg\,min}_{\theta} - \frac{1}{N} \sum_{i=1}^{N} \log p(y^{(i)} | \mathbf{x}^{(i)}; \boldsymbol{\theta})$$

• Will be useful to have **derivative** of sigmoid g(z) for optimization

$$\frac{d}{dz} \left[\frac{1}{1+e^{-z}} \right] = \frac{1}{(1+e^{-z})^2} \cdot e^{-z}$$
$$= \frac{1}{1+e^{-z}} \cdot \left(1 - \frac{1}{1+e^{-z}} \right)$$
$$= g(z)(1-g(z))$$

MLE for Logistic Regression

Gradient Descent for Logistic Regression

- 1. Initialize $\boldsymbol{\theta}^{(0)}$
- 2. Repeat until convergence:

 $\boldsymbol{\theta}$

$$^{(t+1)} = \boldsymbol{\theta}^{(t)} - \alpha \nabla \text{NLL}(\boldsymbol{\theta}^{(t)})$$

$$= \boldsymbol{\theta}^{(t)} - \alpha \left(\frac{1}{N} \sum_{i=1}^{N} \left[\left(g(\mathbf{w}^{\mathsf{T}} \tilde{\mathbf{x}}^{(i)}) - y^{(i)} \right) \tilde{\mathbf{x}}^{(i)} \right] \right)$$

3. When $\mathbf{g}(\boldsymbol{\theta}) = \mathbf{0}$, then we have derived $\mathbf{w}^* = \hat{\boldsymbol{\theta}}_{MLE}$ using GD

Coding Break

Multinomial Logistic Regression

• Can extend logistic regression case where C > 2, with model:

$$p(y \mid \mathbf{x}; \boldsymbol{\theta}) = \operatorname{Cat} \left(y \mid S(\mathbf{W}^{\mathsf{T}} \tilde{\mathbf{x}}) \right)$$
$$\operatorname{Cat} \left(y \mid \boldsymbol{\theta} \right) = \prod_{c=1}^{C} \theta_{c}^{y=c} \quad \text{i.e.} \quad p(y=c \mid \boldsymbol{\theta}) = \theta_{c}$$

- With θ_c as the probability of observing class c
- $\theta = W \in \mathbb{R}^{C \times (n+1)}$ is the weights matrix, assuming bias vector included
- Softmax function $S(\cdot)$ produces probability vector from logits **a**:

$$S(\mathbf{a}) = \left[\frac{e^{a_1}}{\sum_{c'=1}^{C} e^{a'_c}}, \cdots, \frac{e^{a_C}}{\sum_{c'=1}^{C} e^{a'_c}}\right]$$

- Many learning algorithms have probabilistic interpretations
- Code:

<u>https://github.com/mazrk7/EECE5644_IntroMLPR_LectureCode/blob/main/no</u> <u>tebooks/linear_classification/logistic_regression_gd.ipynb</u>

• Beware of overfitting; next we tackle **regularization** and **model selection**!

• Questions?