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Tentative Course Outline (Wks. 3-4)

Perceptrons & Backpropagation

: Additional
Dates Assignments :
Reading
Naive D Classifier &
[ 0 Practice Lel 08 NA
. .. : Homework 2 released on
L 07/19-20 Canvas on 07/22
Parameter Esttmation
Due 08/01 Mutphy 2022
. : Chpt. 10
Logistic Regression 07/21 Murphy 2022
Model Selection: Hyperparameter 07/25 Chpts. 4.5,5.2,54.3
Tuning, k-fold Cross-Validation Murphy 2022
Regularization, Ridge and Lasso Homework 3 released on Chpts. 4.5, 11.1-11.4
Reoression 07/26 Canvas on 07/29 Murohv 2022
S . Due 08/08 =P
Neural Networks: Multilayer 07/27-28 Chpts. 13.1-13.5

Murphy 2022
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Maximum Likelihood Estimation (MLE)

* Given i.i.d. samples {x¥, y(i)}ll-v=1 from a dataset, take log likelihood (LL):

N
LL(6) = logp(D|6) = > logp(x",y|6)
1 =1

N

* Or if unsupervised then unconditional: LL(0) = Z log p(x'V | @)
i=1

* Key Idea: Good values of 8 should assign high probability to D

* Motivates the choice to MLE criterion:

N
0 = arg max log p x|
MLE ge ; g p( 10)
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Maximum a Posterior1 (MAP) Estimation

* To convert Bayesian parameter estimation into an optimization problem,
take the most probable parameter estimate (mode)

Oriap = arg maxlog p(@ | D) = argmax [log p(D | 0) + log p(0)]
0 0

3.0

— Prior

* Can obtain different loss functions 5/ — Likelinood
from the posterior distribution — Posterior

Min. MSE => Mean
Min. Absolute Error => Median
Identical for Gaussian posterior
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MAP Estimation Algorithm

Similar framework to MLE, which can be summarized as:

1. Choose parametric model for p(D | @)

AND prior p(0), e.g., conjugate prior
proTP S COMHSHED Oniap = argmax logp(D|0) +log p(6)]

2. Write out log-posterior as log-likelithood plus
log-prior, express as an optimization problem

3. Use an optimization algorithm, e.g., GD or
SGD, to calculate argmax and derive O, 4p
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Logistic Regression

Linear Regression Logistic Regression
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Remember Linear Classifiers?

Let D = {(x,y)}N N training samples
Inputs x € R™, discrete valued labels y € {0,...,C'}

* Find decision boundaries by hyperplane
* Alinear classifier 1s typically of the form:
y=g(x;0) = g(WwTx) L2

* Decision rule:

1 iftwTx >
9(x;0) = N >
0 otherwise
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Logistic Regression — Sigmoid Function

* Takes a probabilistic approach to learning discriminative functions

* Desire g(w!X) to output probabilities p(y = 1| x; 9)
0<g(wTx) <1

] -
* Model predictions/hypotheses: \

. 1
Y= g(WTX) — 14+ e~ WTx

where|g(2)

Sigmoid/Logistic
Function
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Logistic Regression — Logits

* The quantity z input to the sigmoid 1s known as logit

* Logistic regression like linear regression has a linear predictor form w’%
with an augmented input vector X to account for the line’s bias wy, as:

) 5 - 1
Yy = g(WTX) = g(azowo + ;ivjwj) — 1 + p—WTX

where w e R"t x e R*!
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Logistic Regression — Decision Boundary

* In a 0-1 loss setting with g(w!x) outputting p(y = 1 | x; ), our optimal
decision rule 1s to predict y = 1 1ff:

ply=1|x;0) > ply=0]|x%;0) T~,;,O
- - AWTX 5 o
g(WTx) > 1—g(WTx)

* Rearrange and take logs:
L2
log g(wTx) —log (1 — g(wTx)) > 0

* Decision boundary:

mn
E x;w; > 0 Linear classifier!
J=0
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Nonlinear Classification

2
X2-

Figure 10.3: Illustration of how we can transform a quadratic decision boundary into a linear one by
transforming the features from x = (z1,x2) to ¢(x) = (1, 23). Used with kind permission of Jean-Philippe

Vert.
Transform features ¢(x), e.g. ¢(x1,x2) = [1, xl,a:2] with w = [-R?,1,1], such
that the decision boundary wT¢(x) = z% + x5 — R? is a circle with radlus R.

Sources — Kevin Murphy, “Probabilistic Machine Learning: An Introduction”, 2022
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MLE Algorithm

Summary of MLE framework for parameter estimation:

1. Choose parametric model for p(D | )
and define PMF/PDF

2. Write out log-likelihood, LL(8) or NLL(8),
and express as argmax/min for optimization

3. Use an optimization algorithm, e.g., GD or
SGD to calculate argmax and derive 0 ;¢
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Logistic Regression — Class-Conditional Likelihood

* Observe that our binary probabilistic classifier corresponds to:

p(y|x;0) = Ber (y| g(wTx)) D
= g(wTR)Y(1 — g(WTi))(l—y)

* Thus class-conditional likelihood for all N training samples is:

LL(0) = N logp(D|0) = = logH [ "(1- g(wTi(i)))(l—y(i))}

SR

1

g [g(wT= ) (1 — g(wT)) 0]

=] =
Mz

1

|
Z| -
M-

4D log g(wTx®) + (1 - ) log(1 — g(wTx))]
1
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Derivative of Sigmoid

* Optimization problem: Minimize negative class-conditional log likelihood

N
1 | |
arg min NLL(0) = arg min —— log p(y® | xV): 0
@ 5 (0) = arg: ~ 2 logp(y"| )

1=1

* Will be useful to have derivative of sigmoid g(z) for optimization

d 1 1 .
p— - €
dz |1+ e 7 (14 e=#)?

B 1 | 1
14 e 1+ e %

= 9(2)(1 —g(2))
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MLE for Logistic Regression

1
: - (y@ | x@:
argemm NLL(0) = arg min log ZI I1 p(y' | x\";0)

dNLL(O)
dw

* Find critical point where = 0, so first derive gradient of NLL(8):

dNLL(6)

N
1 | | | |
— <2 o [y“) log g(wTx) + (1 — ) log(1 — g(WTi(”))}

- dw
(v
Kyu) _ g(wTR z>)) i(z’)}

)

@ z

)

@

T%@DY)) — (1 — y(i))g(WTi(i))) i(z‘)}

ZI*—‘
™M=1

1

ZIH
™=

1
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Gradient Descent for Logistic Regression

1. Initialize 09

2. Repeat until convergence:

9!+ — gt) — o VNLL(0W)

_ 61 _ o (le i {(Q(WT)‘E(@) _ ym) i(z‘)} )

1=1

3. When g(0) = 0, then we have derived w* = Ovre using GD
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Coding Break
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Multinomial Logistic Regression

* Can extend logistic regression case where C > 2, with model:

p(y|x;0) = Cat (y | S(WTx))
C

Cat (y|0) = ][ 69=¢ ie. p(y=c|6)=0.

c=1

* With 6, as the probability of observing class ¢
° 9 =W e REX(+1) i the weights matrix, assuming bias vector included

° Softmax function S(-) produces probability vector from logits a:

eal eac
S@) =S oo

Zc’zl e Zc’zl ete
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Concluding Remarks

® Many learning algorithms have probabilistic interpretations
* Code:

https://github.com/mazrk7/EECES5644 IntroMLPR LectureCode/blob/main/no
tebooks/linear classification/logistic regression gd.ipynb

* Beware of overfitting; next we tackle regularization and model selection!

* Questions?
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https://github.com/mazrk7/EECE5644_IntroMLPR_LectureCode/blob/main/notebooks/linear_classification/logistic_regression_gd.ipynb
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