EECE 5644: Introduction to Machine Learning & Pattern Recognition Course Overview

Mark Zolotas

E-mail: <u>m.zolotas@northeastern.edu</u> Webpage: <u>https://coe.northeastern.edu/people/zolotas-mark/</u>

Personal Introduction

- Imperial College London, 2012-2020
 - Master's in Electronic & Information Engineering
 - Focus on robotics and machine learning
 - PhD from Personal Robotics Lab
- NEU RIVeR Lab (since Jan 2021)
 - Postdoctoral Researcher on teleoperation of robot arms
 - Personal approach involves a blend of robot control, machine learning and mixed reality
- No prof Zolotas, prof Mark, etc. please just call me Mark!

Why Machine Learning?

Brain Tumor Segmentation

Credit Card Fraud Detection

Using the Machine Learning Classification Algorithms to detect Credit Card Fraudulent Activities

Everything is personalized

NETFLIX

Robotics observe→learn→act *repeat*

Sources: InfoQ (Netflix), Nvidia (brain tumor segmentation), Dataaspirant (fraud detection), Robotnor (robotics)

Summer 2022

COURSE OVERVIEW

- AI and data specialists **most sought for** roles in 2022 (<u>Business Insider</u>)
- In the US, machine learning roles continue to grow annually by 74% (<u>LinkedIn</u>), or a total estimate of 44% between 2017-2024 (<u>Forbes</u>)
- *Example:* **COVID-19 pandemic** to understand patterns in spread of virus or predict patient responses to different treatment plans (<u>ScienceDirect</u>)

Future of Many Sectors

Intelligent Transportation: route optimization, autonomous vehicles, improved safety & efficiency Healthcare: personalized medicine, predictive diagnosis and treatment, "fully" robotic surgery

What Drives the Hype?

- Ever-increasing data: 2 to 97 zetabytes (2⁷⁰ bytes!!!) from 2010 to 2022
- **Reduced storage costs**, can store terabytes cheaply
- Improvements in compute (CPUs, GPUs, ..., TPUs)
- Better cooling solutions
- Other enhancements (research, education, ethics, etc.)
- BUT beware:
 - * Learning algorithms are only as good as your **assumptions** and **data quality**
 - * NOT every problem needs machine learning

What is Machine Learning?

Def. 2 (Aorth Wischnelle 1993)?):

"A computent program gives id to learns from by perionee IF with composition composition of tasks T and performance measure Perion with experience at tasks in T, as measured by P, improves with experience E."

Relationship to Other Fields

- Learning ↔ Intelligence
 - *Intelligence is the ability to learn/deal with new or trying situations*
- Machine Learning \leftrightarrow Artificial Intelligence (AI)
 - AI is the science of making machines do things that would require intelligence if done by men [Marvin Minsky 1986]
 - ✤ Machine learning is an area of AI concerned with the development of techniques which allow machines to learn
- Data Science ↔ Machine Learning
 - Data science applies techniques from machine learning but focuses on data visualization and presentation (insights/analysis)
- Pattern Recognition ↔ Machine Learning
 - Machine learning provides a set of methods that can automatically detect patterns in data, and then use the uncovered patterns to predict future data, or to perform other kinds of decision making under uncertainty (making an 'action') [Kevin Murphy 2012]

Course Objectives

- Introductory course on machine learning, so we will cover a **range of algorithms** for a broad understanding of the topic
- Enable students to learn **where and how to apply machine learning** algorithms, as well as why they work in some settings but not others
- Equip students with the foundations for a future in machine learning through exposure to **theory** and **hands-on experience**
- Present students with an opportunity to **dive deeper** into a subtopic
 - * Write a technical paper in the chosen area
 - Formulate the problem and implement it programmatically
 - Present the results

Understanding

Use-cases

Theory/Practice

Depth

Probability EECE 3468/MATH3081 or equivalent for undergraduates, EECE 7204/DS5020 or equivalent for graduate students

Linear Algebra

<u>https://cs229.stanford.edu/section/cs229-linalg.pdf</u> https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf

Programming: Must be a self-sufficient programmer (<u>Python</u>, MATLAB, C/C++, R, etc.) ~60% of machine learning developers use Python...

- Take-home Assignments (3*25%): Four take-home assignments will account for 75% of your grade, with the <u>three best scores</u> taken
- Assignments will be handed out **weekly** on Thursdays/Fridays, and then due the following Monday (9-10 days later)
- **Project (remaining 25%):** Teams of 2-3 people (<u>strictly</u>) will work on a machine learning problem of their choosing; writing code, producing, reporting and presenting the results
- Project will occupy **approx. last 2 weeks** of the course more info later

Course Resources

- Lectures: Distributed on a <u>week-by-week</u> basis
- Code: <u>https://github.com/mazrk7/EECE5644_IntroMLPR_LectureCode</u>
- **Canvas:** Will contain lecture slides, an updated timetable for the course and all handouts, e.g., for homework
- Homework & Project Report submitted on Canvas with all deadlines of 11:59PM EDT on the due date
- Microsoft Teams Channel: General class updates, discussions & questions about homework, course material, code, etc... Do NOT directly message me on Teams
- Teaching Assistant (TA): Paul Ghanem <u>ghanem.p@northeastern.edu</u>
- Office Hours: Mon, Wed 2-3:30pm with Paul and Fri 2-4:00pm with me

Textbooks NOT required but recommended as a formal reference:

- Kevin P. Murphy, *Machine Learning: A Probabilistic Perspective*, MIT Press 2012
- Kevin P. Murphy updated book in draft state: <u>Probabilistic Machine Learning: An</u> <u>Introduction</u>, 2022 ← Most recommended
- Christopher M. Bishop, <u>Pattern Recognition and Machine Learning</u>, Springer 2006
- R. O. Duda, P. E. Hart, D. Stork, *Pattern Classification*, 2nd Ed, Wiley and Sons, 2001
- I. Goodfellow, Y. Bengio, A. Courville, <u>*Deep Learning*</u>, MIT Press, 2016

Tentative Course Outline (Wks. 1-2)

Topics	Dates	Assignments	Additional Reading
Course Overview Machine Learning Basics	07/05	Optional Homework 0 released on Canvas on 07/08 but please do NOT submit on Canvas	Chpt. 1 Murphy 2012
Foundations: Linear Algebra, Probability, Numerical Optimization (Gradient Descent), Regression	07/06-11		Stanford LA Review Stanford Prob. Review Chpt. 8 Murphy 2022
Quick Python Tutorial	07/12	Homework 1 released on Canvas on 07/15 Due 07/25	N/A
Linear Classifier Design, Linear Discriminant Analysis and Principal Component Analysis (PCA)	07/13-14		Chpts. 9.2 & 20.1 Murphy 2022
Bayesian Decision Theory: Empirical Risk Min, Max Likelihood (ML), Max a Posteriori	07/14-15		Chpt. 2 Duda & Hart 2001 Deniz Erdogmus Notes

Tentative Course Outline (Wks. 3-4)

Topics	Dates	Assignments	Additional Reading
Naïve Bayes Classifier & Homework 0 Practice Lab	07/18	Homework 2 released on Canvas on 07/22 Due 08/01	N/A
Model Fitting/Training: Bayesian Parameter Estimation	07/19-20		Chpts. 4.1-4.3, 8.7.2-3 Murphy 2022
Logistic Regression	07/21		Chpt. 10 Murphy 2022
Model Selection: Hyperparameter Tuning, k-fold Cross-Validation	07/25	Homework 3 released on Canvas on 07/29 Due 08/08	Chpts. 4.5, 5.2, 5.4.3 Murphy 2022
Regularization, Ridge and Lasso Regression	07/26		Chpts. 4.5, 11.1-11.4 Murphy 2022
Neural Networks: Multilayer Perceptrons & Backpropagation	07/27-28		Chpts. 13.1-13.5 Murphy 2022

Tentative Course Outline (Wks. 5-6*)

Topics	Dates	Assignments	Additional Reading
Support Vector Machines (SVMs)	08/01-02	Homework 4 released on Canvas on 08/05 Due 08/15	Burges Tutorial
Clustering: K-means, Gaussian Mixture Models (GMMs)	08/03		Chpt. 21 Murphy 2022
Labs/Recap/Interactive/Catch-up	08/04		N/A
More on Deep Learning (CNNs & RNNs)	08/08-09	Make sure project teams (2-3 ppl. strict) are fully formed by 08/12	Deep Learning Goodfellow et al. 2016 <u>http://d21.ai/</u>
Ensemble Methods: Decision Trees, Boosting & Bagging	08/09-10		Chpt. 18 Murphy 2022

Tentative Course Outline (Wks. 6*-8)

Topics	Dates	Assignments	Additional Reading
Project + Practical Tips	08/11	Final Project Reports & Code Due 08/22 Presentations on 08/22-23 in normal lecture hours and office hours depending on no. of groups	N/A
Dimensionality Reduction & Representation Learning (Autoencoders)	08/15		Chpt. 20 Murphy 2022
Model Predictive Control (MPC)	08/16-17		TBD
Gaussian Processes	08/18		TBD
Project Presentations	08/22-23		N/A

Questions?

Types of Machine Learning

- **Supervised Learning:** Train or "teach" an algorithm using input-output pairs (labelled/categorized data)
 - Classification
 - Regression
- Unsupervised Learning: No feedback, "make sense" of structure in the data (*knowledge discovery*)
 - Clustering
 - Dimensionality Reduction (e.g., PCA)
 - Feature Learning (e.g., Autoencoders)
- **Reinforcement Learning:** Equip intelligent agents with reward-maximizing decision-making (action-taking)

Supervised Learning

Classification

Let $\mathcal{D} = \{(\mathbf{x}^{(i)}, y^{(i)})\}_{i=1}^{N}$, N training samples Inputs or **features** $\mathbf{x} \in \mathcal{X} = \mathbb{R}^{n}$ **Classification:** discrete valued outputs or **labels** $y \in \{1, \ldots, C\}$ **Binary** if C = 2, i.e. $y \in \{0, 1\}$, **multi-label** if C > 2

Regression

Regression: same as before, except **continuous** valued outputs For i^{th} feature vector $\mathbf{x}^{(i)} \in \mathbb{R}^n$, there is a real-valued response $y^{(i)} \in \mathbb{R}$

In both classification and regression; wish to predict on *future/unseen* data

Aim to **generalize** beyond our "training set"

Overfitting/Underfitting (1)

Def. Given a hypothesis space \mathcal{H} , a hypothesis $h \in \mathcal{H}$ is said to **overfit** the training data if there exists some alternative hypothesis $h' \in \mathcal{H}$, such that h has smaller error than h' over the training examples, but h' has a smaller error than h over the entire distribution of instances (Mitchell, 1997).

Red: Training set Green: True target function Blue: What we have learned (overfit)

Overfitting: Small error on training set, large on **test set** *Underfitting:* Large **error** on both training and test sets

Overfitting/Underfitting (2)

Figure 1.7: (a-c) Polynomials of degrees 2, 14 and 20 fit to 21 datapoints. (d) MSE vs degree.

Murphy, "Probabilistic Machine Learning: An Introduction", 2022

4 6 8 degree (d)

16

14

12

> 6 -4 -

2 -0 -

Summer 2022

10

12

14

test

train

Unsupervised Learning

COURSE OVERVIEW

Dimensionality Reduction

Useful for:

- Compression (remove redundancies)
- Visualization

Beware:

- Lossy transformation
- Prevent overfitting?

Representation Matters

Goodfellow et al., "Deep Learning", 2016

Deep Learning

Figure 1.4: A Venn diagram showing how deep Figurieng .is: aFkindt bantspales exitagion de almidigferent partishofsain All systemateliate a obianchleatheing, it which is fifsecht of Indisgiphines of Shhadpphoaches into Alte Earlpsection that have Valore dialgram fine the data example of an AI technology. Goodfellow et al., "Deep Learning", 2016 Goodfellow et al., "Deep Learning", 2016

Quick Quiz

Are the following **supervised/unsupervised** applications of machine learning?

- 1) Given incoming labeled spam emails, learn an algorithm to identify spam: \sum
- 2) Provided with a labeled image dataset of social media photos, detect pixel regions where faces are present: $_$
- 3) Discover association rules between different Amazon products and customers:
- 4) Labeling and ranking web pages on Google: 5+1

Software Tools

https://towardsdatascience.com/best-python-librariesfor-machine-learning-and-deep-learning-b0bd40c7e8c

Summer 2022

COURSE OVERVIEW